Add type hints in problems 31-40

This commit is contained in:
daniele 2024-09-29 16:17:17 +02:00
parent 48ab60733d
commit 3a4f85db04
Signed by: fuxino
GPG Key ID: 981A2B2A3BBF5514
10 changed files with 39 additions and 32 deletions

View File

@ -10,13 +10,16 @@
#
# How many different ways can £2 be made using any number of coins?
from typing import List
from projecteuler import timing
# Simple recursive function that tries every combination.
def count(coins, value, n, i):
def count(coins: List[int], value: int, n: int, i: int) -> int:
for j in range(i, 8):
value = value + coins[j]
if value == 200:
return n + 1
@ -30,7 +33,7 @@ def count(coins, value, n, i):
@timing
def p031():
def p031() -> None:
coins = [1, 2, 5, 10, 20, 50, 100, 200]
n = count(coins, 0, 0, 0)

View File

@ -16,7 +16,7 @@ from projecteuler import is_pandigital, timing
@timing
def p032():
def p032() -> None:
n = 0
# Initially I used a bigger array, but printing the resulting products
# shows that 10 values are sufficient.
@ -70,14 +70,14 @@ def p032():
# Sort the found products to easily see if there are duplicates.
products = np.sort(products[:n])
sum_ = products[0]
_sum = products[0]
for i in range(1, n):
if products[i] != products[i-1]:
sum_ = sum_ + products[i]
_sum = _sum + products[i]
print('Project Euler, Problem 32')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -16,7 +16,7 @@ from projecteuler import timing
@timing
def p033():
def p033() -> None:
prod_n = 1
prod_d = 1

View File

@ -14,9 +14,9 @@ from projecteuler import timing
@timing
def p034():
def p034() -> None:
a = 10
sum_ = 0
_sum = 0
factorials = ones(10, int)
# Pre-calculate factorials of each digit from 0 to 9.
@ -34,12 +34,12 @@ def p034():
sum_f = sum_f + factorials[digit]
if a == sum_f:
sum_ = sum_ + a
_sum = _sum + a
a = a + 1
print('Project Euler, Problem 34')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -14,7 +14,7 @@ N = 1000000
primes = sieve(N)
def is_circular_prime(n):
def is_circular_prime(n: int) -> bool:
# If n is not prime, it's obviously not a circular prime.
if primes[n] == 0:
return False
@ -31,6 +31,7 @@ def is_circular_prime(n):
while tmp > 0:
if tmp % 2 == 0:
return False
# Count the number of digits.
count = count + 1
tmp = tmp // 10
@ -46,7 +47,7 @@ def is_circular_prime(n):
@timing
def p035():
def p035() -> None:
count = 13
# Calculate all primes below one million, then check if they're circular.

View File

@ -10,20 +10,20 @@ from projecteuler import is_palindrome, timing
@timing
def p036():
def p036() -> None:
N = 1000000
sum_ = 0
_sum = 0
# Brute force approach. For every number below 1 million,
# check if they're palindrome in base 2 and 10 using the
# function implemented in projecteuler.c.
for i in range(1, N):
if is_palindrome(i, 10) and is_palindrome(i, 2):
sum_ = sum_ + i
_sum = _sum + i
print('Project Euler, Problem 36')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -10,7 +10,7 @@
from projecteuler import is_prime, timing
def is_tr_prime(n):
def is_tr_prime(n: int) -> bool:
# One-digit numbers and non-prime numbers are
# not truncatable primes.
if n < 11 or not is_prime(n):
@ -23,6 +23,7 @@ def is_tr_prime(n):
while tmp > 0:
if not is_prime(tmp):
return False
tmp = tmp // 10
# Starting from the last digit, check if it's prime, then add back one digit at a time on the left and check if it
@ -33,6 +34,7 @@ def is_tr_prime(n):
while tmp != n:
if not is_prime(tmp):
return False
i = i * 10
tmp = n % i
@ -41,20 +43,20 @@ def is_tr_prime(n):
@timing
def p037():
def p037() -> None:
i = 0
n = 1
sum_ = 0
_sum = 0
# Check every number until 11 truncatable primes are found.
while i < 11:
if is_tr_prime(n):
sum_ = sum_ + n
_sum = _sum + n
i = i + 1
n = n + 1
print('Project Euler, Problem 37')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -17,8 +17,8 @@ from projecteuler import is_pandigital, timing
@timing
def p038():
max_ = 0
def p038() -> None:
_max = 0
# A brute force approach is used, starting with 1 and multiplying
# the number by 1, 2 etc., concatenating the results, checking if
@ -35,8 +35,8 @@ def p038():
n = n + tmp
j = j + 1
if n > max_ and is_pandigital(n, 9):
max_ = n
if n > _max and is_pandigital(n, 9):
_max = n
if i * j < 10:
n = n * 10
elif i * j < 100:
@ -52,7 +52,7 @@ def p038():
break
print('Project Euler, Problem 38')
print(f'Answer: {max_}')
print(f'Answer: {_max}')
if __name__ == '__main__':

View File

@ -12,8 +12,9 @@ from projecteuler import timing
@timing
def p039():
max_ = 0
def p039() -> None:
_max = 0
res = 0
savedc = zeros(1000, int)
# Start with p=12 (the smallest pythagorean triplet is (3,4,5) and 3+4+5=12.
@ -59,8 +60,8 @@ def p039():
# If the current value is greater than the maximum,
# save the new maximum and the value of p.
if count > max_:
max_ = count
if count > _max:
_max = count
res = p
print('Project Euler, Problem 39')

View File

@ -16,7 +16,7 @@ from projecteuler import timing
@timing
def p040():
def p040() -> None:
digits = zeros(1000005, int)
i = 1
value = 1