Add type hints in problems 21-30

This commit is contained in:
daniele 2024-09-29 15:57:30 +02:00
parent f8b5260349
commit 48ab60733d
Signed by: fuxino
GPG Key ID: 981A2B2A3BBF5514
10 changed files with 41 additions and 39 deletions

View File

@ -13,8 +13,8 @@ from projecteuler import sum_of_divisors, timing
@timing
def p021():
sum_ = 0
def p021() -> None:
_sum = 0
for i in range(2, 10000):
# Calculate the sum of proper divisors with the function
@ -24,12 +24,12 @@ def p021():
# If i!=n and the sum of proper divisors of n=i,
# sum the pair of numbers and add it to the total.
if i != n and sum_of_divisors(n) == i:
sum_ = sum_ + i + n
_sum = _sum + i + n
sum_ = sum_ // 2
_sum = _sum // 2
print('Project Euler, Problem 21')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -14,7 +14,7 @@ from projecteuler import timing
@timing
def p022():
def p022() -> None:
try:
with open('p022_names.txt', 'r', encoding='utf-8') as fp:
names = list(fp.readline().replace('"', '').split(','))
@ -24,7 +24,7 @@ def p022():
names.sort()
sum_ = 0
_sum = 0
i = 1
# Calculate the score of each name an multiply by its position.
@ -34,11 +34,11 @@ def p022():
for j in range(l):
score = score + ord(name[j]) - ord('A') + 1
score = score * i
sum_ = sum_ + score
_sum = _sum + score
i = i + 1
print('Project Euler, Problem 22')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -15,12 +15,12 @@
from projecteuler import sum_of_divisors, timing
def is_abundant(n):
def is_abundant(n: int) -> bool:
return sum_of_divisors(n) > n
@timing
def p023():
def p023() -> None:
ab_nums = [False] * 28124
# Find all abundant numbers smaller than 28123.
@ -36,19 +36,20 @@ def p023():
if ab_nums[i]:
for j in range(i, 28123):
if ab_nums[j]:
sum_ = i + j
if sum_ <= 28123:
sums[sum_] = True
_sum = i + j
sum_ = 0
if _sum <= 28123:
sums[_sum] = True
_sum = 0
# Sum every number that was not found as a sum of two abundant numbers.
for i in range(1, 28124):
if not sums[i]:
sum_ = sum_ + i
_sum = _sum + i
print('Project Euler, Problem 23')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -13,7 +13,7 @@ from projecteuler import timing
@timing
def p024():
def p024() -> None:
# Generate all the permutations in lexicographic order and get the millionth one.
perm = list(permutations('0123456789'))
res = int(''.join(map(str, perm[999999])))

View File

@ -25,7 +25,7 @@ from projecteuler import timing
@timing
def p025():
def p025() -> None:
fib1 = 1
fib2 = 1
fibn = fib1 + fib2

View File

@ -20,8 +20,9 @@ from projecteuler import timing
@timing
def p026():
max_ = 0
def p026() -> None:
_max = 0
max_n = -1
for i in range(2, 1000):
j = i
@ -50,8 +51,8 @@ def p026():
k = k * 10
k = k + 9
if n > max_:
max_ = n
if n > _max:
_max = n
max_n = i
print('Project Euler, Problem 26')

View File

@ -24,8 +24,8 @@ from projecteuler import is_prime, timing
@timing
def p027():
max_ = 0
def p027() -> None:
_max = 0
# Brute force approach, optimized by checking only values of b where b is prime.
for a in range(-999, 1000):
@ -44,8 +44,8 @@ def p027():
else:
break
if count > max_:
max_ = count
if count > _max:
_max = count
save_a = a
save_b = b

View File

@ -16,7 +16,7 @@ from projecteuler import timing
@timing
def p028():
def p028() -> None:
N = 1001
limit = N * N
@ -24,7 +24,7 @@ def p028():
i = 0
j = 1
step = 0
sum_ = 1
_sum = 1
# Starting with the central 1, it's easy to see that the next four numbers in the diagonal
# are 1+2, 1+2+2, 1+2+2+2 and 1+2+2+2+2, then for the next four number the step is increased
@ -34,11 +34,11 @@ def p028():
if i == 0:
step = step + 2
j = j + step
sum_ = sum_ + j
_sum = _sum + j
i = (i + 1) % 4
print('Project Euler, Problem 28')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -19,17 +19,17 @@ from projecteuler import timing
@timing
def p029():
powers = zeros(9801)
def p029() -> None:
_powers = zeros(9801)
# Generate all the powers
for i in range(2, 101):
a = i
for j in range(2, 101):
powers[(i-2)*99+j-2] = a ** j
_powers[(i-2)*99+j-2] = a ** j
# Sort the values and count the different values.
powers = list(powers)
powers = list(_powers)
powers.sort()
count = 1

View File

@ -16,7 +16,7 @@ from projecteuler import timing
@timing
def p030():
def p030() -> None:
tot = 0
# Straightforward brute force approach. The limit is chosen considering that
@ -24,14 +24,14 @@ def p030():
# of 5th power of its digits.
for i in range(10, 354295):
j = i
sum_ = 0
_sum = 0
while j > 0:
digit = j % 10
sum_ = sum_ + digit ** 5
_sum = _sum + digit ** 5
j = j // 10
if sum_ == i:
if _sum == i:
tot = tot + i
print('Project Euler, Problem 30')