2024-12-20 18:54:05 +01:00

69 lines
2.4 KiB
Haskell

module Graph
( Graph (..),
Distance (..),
findShortestPath,
)
where
import qualified Data.HashMap.Strict as M
import Data.Hashable (Hashable)
import Data.Maybe (fromJust)
import qualified Data.PSQueue as PQ
newtype Graph a = Graph {edges :: M.HashMap a [a]} deriving (Show)
data Distance a = Dist a | Infinity deriving (Eq)
instance (Ord a) => Ord (Distance a) where
Infinity <= Infinity = True
Infinity <= Dist _ = False
Dist _ <= Infinity = True
Dist x <= Dist y = x <= y
instance (Show a) => Show (Distance a) where
show Infinity = "Infinity"
show (Dist x) = show x
addDistance :: (Num a) => Distance a -> Distance a -> Distance a
addDistance (Dist x) (Dist y) = Dist (x + y)
addDistance _ _ = Infinity
data DijkstraState a b = DijkstraState
{ unvisited :: PQ.PSQ a (Distance b),
distances :: M.HashMap a (Distance b)
}
updateDistances :: (Hashable a) => M.HashMap a (Distance b) -> [a] -> Distance b -> M.HashMap a (Distance b)
updateDistances dists [] _ = dists
updateDistances dists (n : nodes) startD =
updateDistances (M.adjust (const startD) n dists) nodes startD
visit :: (Ord a, Ord b) => PQ.PSQ a (Distance b) -> a -> [a] -> Distance b -> PQ.PSQ a (Distance b)
visit us node [] _ = PQ.delete node us
visit us node (e : es) dist = visit (PQ.adjust (const dist) e us) node es dist
visitNode :: (Hashable a, Ord a, Ord b) => DijkstraState a b -> Graph a -> a -> Distance b -> DijkstraState a b
visitNode state graph node d =
let es = edges graph M.! node
ds = updateDistances (distances state) es d
us = visit (unvisited state) node es d
in state {unvisited = us, distances = ds}
findShortestPath :: (Hashable a, Ord a, Ord b, Num b) => Graph a -> a -> a -> Distance b
findShortestPath graph start end =
let nodesDist = (start PQ.:-> Dist 0) : [k PQ.:-> Infinity | k <- M.keys $ edges graph, k /= start]
dists = (start, Dist 0) : [(k, Infinity) | k <- M.keys $ edges graph, k /= start]
initialState = DijkstraState {unvisited = PQ.fromList nodesDist, distances = M.fromList dists}
in dijkstra initialState
where
dijkstra s =
let nd = fromJust $ PQ.findMin (unvisited s)
n = PQ.key nd
d = PQ.prio nd
in if n == end
then d
else
if d == Infinity
then Infinity
else dijkstra $ visitNode s graph n (addDistance d (Dist 1))