module Graph ( Graph (..), Distance (..), findShortestPath, ) where import qualified Data.HashMap.Strict as M import Data.Hashable (Hashable) import Data.Maybe (fromJust) import qualified Data.PSQueue as PQ newtype Graph a = Graph {edges :: M.HashMap a [a]} deriving (Show) data Distance a = Dist a | Infinity deriving (Eq) instance (Ord a) => Ord (Distance a) where Infinity <= Infinity = True Infinity <= Dist _ = False Dist _ <= Infinity = True Dist x <= Dist y = x <= y instance (Show a) => Show (Distance a) where show Infinity = "Infinity" show (Dist x) = show x addDistance :: (Num a) => Distance a -> Distance a -> Distance a addDistance (Dist x) (Dist y) = Dist (x + y) addDistance _ _ = Infinity data DijkstraState a b = DijkstraState { unvisited :: PQ.PSQ a (Distance b), distances :: M.HashMap a (Distance b) } updateDistances :: (Hashable a) => M.HashMap a (Distance b) -> [a] -> Distance b -> M.HashMap a (Distance b) updateDistances dists [] _ = dists updateDistances dists (n : nodes) startD = updateDistances (M.adjust (const startD) n dists) nodes startD visit :: (Ord a, Ord b) => PQ.PSQ a (Distance b) -> a -> [a] -> Distance b -> PQ.PSQ a (Distance b) visit us node [] _ = PQ.delete node us visit us node (e : es) dist = visit (PQ.adjust (const dist) e us) node es dist visitNode :: (Hashable a, Ord a, Ord b) => DijkstraState a b -> Graph a -> a -> Distance b -> DijkstraState a b visitNode state graph node d = let es = edges graph M.! node ds = updateDistances (distances state) es d us = visit (unvisited state) node es d in state {unvisited = us, distances = ds} findShortestPath :: (Hashable a, Ord a, Ord b, Num b) => Graph a -> a -> a -> Distance b findShortestPath graph start end = let nodesDist = (start PQ.:-> Dist 0) : [k PQ.:-> Infinity | k <- M.keys $ edges graph, k /= start] dists = (start, Dist 0) : [(k, Infinity) | k <- M.keys $ edges graph, k /= start] initialState = DijkstraState {unvisited = PQ.fromList nodesDist, distances = M.fromList dists} in dijkstra initialState where dijkstra s = let nd = fromJust $ PQ.findMin (unvisited s) n = PQ.key nd d = PQ.prio nd in if n == end then d else if d == Infinity then Infinity else dijkstra $ visitNode s graph n (addDistance d (Dist 1))