Add more solutions

Added solutions for problem 206 in C and python, and for problem
357 in C.
This commit is contained in:
daniele 2019-10-08 14:35:25 +02:00
parent a6f86db117
commit cf5b3943a6
Signed by: fuxino
GPG Key ID: 6FE25B4A3EE16FDA
3 changed files with 184 additions and 0 deletions

60
C/p206.c Normal file
View File

@ -0,0 +1,60 @@
/* Find the unique positive integer whose square has the form 1_2_3_4_5_6_7_8_9_0,
* where each _ is a single digit.*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(int argc, char **argv)
{
int i, found = 0;
/* Since the square of n has 19 digits, n must be at least 10^9.*/
long int n = 1e9, p;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
while(!found)
{
/* If the square on n ends with 10, n must be divisible by 10.*/
n += 10;
p = n * n;
/* A square divisible by 10 is also divisible by 100.*/
if(p % 100 != 0)
{
continue;
}
/* Check if the digits of the square correspond to the given pattern.*/
i = 9;
p /= 100;
while(p > 0)
{
if(p % 10 != i)
{
break;
}
p /= 100;
i--;
}
if(p == 0)
{
found = 1;
}
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 206\n");
printf("Answer: %d\n", n);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}

78
C/p357.c Normal file
View File

@ -0,0 +1,78 @@
/* Consider the divisors of 30: 1,2,3,5,6,10,15,30.
* It can be seen that for every divisor d of 30, d+30/d is prime.
*
* Find the sum of all positive integers n not exceeding 100 000 000
* such that for every divisor d of n, d+n/d is prime.*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "projecteuler.h"
#define N 100000000
int check_d_nd_prime(int n);
int *primes;
int main(int argc, char **argv)
{
int i;
long int sum = 0;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
if((primes = sieve(N+2)) == NULL)
{
fprintf(stderr, "Error! Sieve function returned NULL\n");
return 1;
}
for(i = 2; i <= N; i += 2)
{
/* Every number is divisible by 1, so 1+n/1=n+1 must be prime.*/
if(primes[i+1] && check_d_nd_prime(i))
{
sum += i;
}
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 357\n");
printf("Answer: %ld\n", sum);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}
int check_d_nd_prime(int n)
{
int i, limit;
/* To get all divisors, it's sufficient to loop up to the square root
* of the number, because for every divisor d smaller than sqrt(n) n/d
* is also a divisor larger than sqrt(n).*/
limit = floor(sqrt(n));
for(i = 2; i <= limit; i++)
{
if(n % i == 0)
{
/* We only need to check the property for i and not n/i.
* If d=n/i, we would have to check if n/i+n/(n/i)=n/i+i is prime.*/
if(!primes[i+n/i])
{
return 0;
}
}
}
return 1;
}

46
Python/p206.py Normal file
View File

@ -0,0 +1,46 @@
#!/usr/bin/python3
# Find the unique positive integer whose square has the form 1_2_3_4_5_6_7_8_9_0,
# where each “_” is a single digit.
from timeit import default_timer
def main():
start = default_timer()
# Since the square of n has 19 digits, n must be at least 10^9.
n = 1000000000
found = 0
while not found:
# If the square on n ends with 10, n must be divisible by 10.
n = n + 10
p = n * n
# A square divisible by 10 is also divisible by 100.
if p % 100 != 0:
continue
# Check if the digits of the square correspond to the given pattern.
i = 9
p = p // 100
while p > 0:
if p % 10 != i:
break
p = p // 100
i = i - 1
if p == 0:
found = 1
end = default_timer()
print('Project Euler, Problem 206')
print('Answer: {}'.format(n))
print('Elapsed time: {:.9f} seconds'.format(end - start))
if __name__ == '__main__':
main()