Add Haskell solutions for Problem 21

This commit is contained in:
daniele 2024-11-09 22:19:21 +01:00
parent 4245a2d19b
commit a689f0df14
Signed by: fuxino
GPG Key ID: 981A2B2A3BBF5514
2 changed files with 27 additions and 0 deletions

View File

@ -1,6 +1,7 @@
module ProjectEuler
( isPrime
, digitSum
, sumProperDivisors
) where
import Data.Char (digitToInt)
@ -18,3 +19,6 @@ isPrime n =
digitSum :: (Integral a, Show a) => a -> Int
digitSum n = sum $ map digitToInt $ show n
sumProperDivisors :: (Integral a) => a -> a
sumProperDivisors n = sum [ if x /= y then x + y else x | x <- [2..ceiling $ sqrt $ fromIntegral n], let y = n `div` x, n `mod` x == 0 ] + 1

23
Haskell/p021.hs Normal file
View File

@ -0,0 +1,23 @@
-- Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
-- If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
--
-- For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284.
-- The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
--
-- Evaluate the sum of all the amicable numbers under 10000.
import ProjectEuler (sumProperDivisors)
properDivisors :: (Integral a) => a -> [a]
properDivisors n = [ x | x <- [1..n-1], n `mod` x == 0]
amicable :: (Integral a) => a -> a -> Bool
amicable x y = x /= y && (sumProperDivisors x) == y && (sumProperDivisors y) == x
sumAmicable :: (Integral a) => a -> a
sumAmicable n = sum [ x | x <- [1..n-1], amicable x $ sumProperDivisors x ]
main = do
let result = sumAmicable 10000
putStrLn $ "Project Euler, Problem 21\n"
++ "Answer: " ++ (show result)