Add Haskell solutions for Problem 21
This commit is contained in:
parent
4245a2d19b
commit
a689f0df14
@ -1,6 +1,7 @@
|
||||
module ProjectEuler
|
||||
( isPrime
|
||||
, digitSum
|
||||
, sumProperDivisors
|
||||
) where
|
||||
|
||||
import Data.Char (digitToInt)
|
||||
@ -18,3 +19,6 @@ isPrime n =
|
||||
digitSum :: (Integral a, Show a) => a -> Int
|
||||
digitSum n = sum $ map digitToInt $ show n
|
||||
|
||||
|
||||
sumProperDivisors :: (Integral a) => a -> a
|
||||
sumProperDivisors n = sum [ if x /= y then x + y else x | x <- [2..ceiling $ sqrt $ fromIntegral n], let y = n `div` x, n `mod` x == 0 ] + 1
|
||||
|
23
Haskell/p021.hs
Normal file
23
Haskell/p021.hs
Normal file
@ -0,0 +1,23 @@
|
||||
-- Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
|
||||
-- If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
|
||||
--
|
||||
-- For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284.
|
||||
-- The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
|
||||
--
|
||||
-- Evaluate the sum of all the amicable numbers under 10000.
|
||||
|
||||
import ProjectEuler (sumProperDivisors)
|
||||
|
||||
properDivisors :: (Integral a) => a -> [a]
|
||||
properDivisors n = [ x | x <- [1..n-1], n `mod` x == 0]
|
||||
|
||||
amicable :: (Integral a) => a -> a -> Bool
|
||||
amicable x y = x /= y && (sumProperDivisors x) == y && (sumProperDivisors y) == x
|
||||
|
||||
sumAmicable :: (Integral a) => a -> a
|
||||
sumAmicable n = sum [ x | x <- [1..n-1], amicable x $ sumProperDivisors x ]
|
||||
|
||||
main = do
|
||||
let result = sumAmicable 10000
|
||||
putStrLn $ "Project Euler, Problem 21\n"
|
||||
++ "Answer: " ++ (show result)
|
Loading…
x
Reference in New Issue
Block a user