Improve solution for problem 47
This commit is contained in:
parent
ed7031df4d
commit
7489196be8
75
C/p047.c
75
C/p047.c
@ -15,88 +15,81 @@
|
|||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
#include <time.h>
|
#include <time.h>
|
||||||
#include "projecteuler.h"
|
|
||||||
|
|
||||||
#define N 150000
|
#define N 150000
|
||||||
|
|
||||||
int count_distinct_factors(int n);
|
int *count_factors(int n);
|
||||||
|
|
||||||
int *primes;
|
|
||||||
|
|
||||||
int main(int argc, char **argv)
|
int main(int argc, char **argv)
|
||||||
{
|
{
|
||||||
int i, found = 0;
|
int i, count, res;
|
||||||
|
int *factors;
|
||||||
double elapsed;
|
double elapsed;
|
||||||
struct timespec start, end;
|
struct timespec start, end;
|
||||||
|
|
||||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||||
|
|
||||||
if((primes = sieve(N)) == NULL)
|
if((factors = count_factors(N)) == NULL)
|
||||||
{
|
{
|
||||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
fprintf(stderr, "Error! Count_factors function returned NULL\n");
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Starting from 647, count the distinct prime factors of n, n+1, n+2 and n+3.
|
count = 0;
|
||||||
* If they all have 4, the solution is found.*/
|
|
||||||
for(i = 647; !found && i < N - 3; i++)
|
for(i = 0; i < N; i++)
|
||||||
{
|
{
|
||||||
if(!primes[i] && !primes[i+1] && !primes[i+2] && !primes[i+3])
|
if(factors[i] == 4)
|
||||||
{
|
{
|
||||||
if(count_distinct_factors(i) == 4 && count_distinct_factors(i+1) == 4 &&
|
count++;
|
||||||
count_distinct_factors(i+2) == 4 && count_distinct_factors(i+3) == 4)
|
|
||||||
{
|
|
||||||
found = 1;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
count = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
free(primes);
|
if(count == 4)
|
||||||
|
{
|
||||||
|
res = i - 3;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||||
|
|
||||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||||
|
|
||||||
printf("Project Euler, Problem 47\n");
|
printf("Project Euler, Problem 47\n");
|
||||||
printf("Answer: %d\n", i-1);
|
printf("Answer: %d\n", res);
|
||||||
|
|
||||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
int count_distinct_factors(int n)
|
/* Function using a modified sieve of Eratosthenes to count
|
||||||
|
* the distinct prime factors of each number.*/
|
||||||
|
int *count_factors(int n)
|
||||||
{
|
{
|
||||||
int i, count=0;
|
int i = 2, j;
|
||||||
|
int *factors;
|
||||||
|
|
||||||
/* Start checking if 2 is a prime factor of n. Then remove
|
if((factors = (int *)calloc(n, sizeof(int))) == NULL)
|
||||||
* all 2s factore.*/
|
|
||||||
if(n % 2 == 0)
|
|
||||||
{
|
{
|
||||||
count++;
|
return NULL;
|
||||||
|
|
||||||
do
|
|
||||||
{
|
|
||||||
n /= 2;
|
|
||||||
}while(n % 2 == 0);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Check all odd numbers i, if they're prime and they're a factor
|
while(i < n / 2)
|
||||||
* of n, count them and then divide n for by i until all factors i
|
|
||||||
* are eliminated. Stop the loop when n=1, i.e. all factors have
|
|
||||||
* been found.*/
|
|
||||||
for(i = 3; n > 1; i += 2)
|
|
||||||
{
|
{
|
||||||
if(primes[i] && n % i == 0)
|
if(factors[i] == 0)
|
||||||
{
|
{
|
||||||
count++;
|
for(j = i; j < n; j += i)
|
||||||
|
|
||||||
do
|
|
||||||
{
|
{
|
||||||
n /= i;
|
factors[j]++;
|
||||||
}while(n % i == 0);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
|
||||||
return count;
|
return factors;
|
||||||
}
|
}
|
||||||
|
@ -14,65 +14,46 @@
|
|||||||
# Find the first four consecutive integers to have four distinct prime factors each. What is the first of these numbers?
|
# Find the first four consecutive integers to have four distinct prime factors each. What is the first of these numbers?
|
||||||
|
|
||||||
from timeit import default_timer
|
from timeit import default_timer
|
||||||
from projecteuler import sieve
|
|
||||||
|
|
||||||
def count_distinct_factors(n):
|
# Function using a modified sieve of Eratosthenes to count
|
||||||
global primes
|
# the prime factors of each number.
|
||||||
count = 0
|
def count_factors(n):
|
||||||
|
factors = [0] * n
|
||||||
|
i = 2
|
||||||
|
|
||||||
# Start checking if 2 is a prime factor of n. Then remove
|
while i < n // 2:
|
||||||
# all 2s factore.
|
if factors[i] == 0:
|
||||||
if n % 2 == 0:
|
for j in range(i, n, i):
|
||||||
count = count + 1
|
factors[j] = factors[j] + 1
|
||||||
|
i = i + 1
|
||||||
|
|
||||||
while True:
|
return factors
|
||||||
n = n // 2
|
|
||||||
|
|
||||||
if n % 2 != 0:
|
|
||||||
break
|
|
||||||
|
|
||||||
i = 3
|
|
||||||
|
|
||||||
# Check all odd numbers i, if they're prime and they're a factor
|
|
||||||
# of n, count them and then divide n for by i until all factors i
|
|
||||||
# are eliminated. Stop the loop when n=1, i.e. all factors have
|
|
||||||
# been found.
|
|
||||||
while n > 1:
|
|
||||||
if primes[i] == 1 and n % i == 0:
|
|
||||||
count = count + 1
|
|
||||||
|
|
||||||
while True:
|
|
||||||
n = n // i
|
|
||||||
|
|
||||||
if n % i != 0:
|
|
||||||
break
|
|
||||||
i = i + 2
|
|
||||||
|
|
||||||
return count
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
start = default_timer()
|
start = default_timer()
|
||||||
|
|
||||||
global primes
|
|
||||||
|
|
||||||
N = 150000
|
N = 150000
|
||||||
|
|
||||||
primes = sieve(N)
|
factors = count_factors(N)
|
||||||
found = 0
|
|
||||||
i = 647
|
|
||||||
|
|
||||||
# Starting from 647, count the distinct prime factors of n, n+1, n+2 and n+3.
|
count = 0
|
||||||
# If they all have 4, the solution is found.
|
|
||||||
while not found and i < N - 3:
|
# Find the first instance of four consecutive numbers
|
||||||
if primes[i] == 0 and primes[i+1] == 0 and primes[i+2] == 0 and primes[i+3] == 0:
|
# having four distinct prime factors.
|
||||||
if count_distinct_factors(i) == 4 and count_distinct_factors(i+1) == 4 and count_distinct_factors(i+2) == 4 and count_distinct_factors(i+3) == 4:
|
for i in range(N):
|
||||||
found = 1
|
if factors[i] == 4:
|
||||||
i = i + 1
|
count = count + 1
|
||||||
|
else:
|
||||||
|
count = 0
|
||||||
|
|
||||||
|
if count == 4:
|
||||||
|
res = i - 3
|
||||||
|
break
|
||||||
|
|
||||||
end = default_timer()
|
end = default_timer()
|
||||||
|
|
||||||
print('Project Euler, Problem 47')
|
print('Project Euler, Problem 47')
|
||||||
print('Answer: {}'.format(i-1))
|
print('Answer: {}'.format(res))
|
||||||
|
|
||||||
print('Elapsed time: {:.9f} seconds'.format(end - start))
|
print('Elapsed time: {:.9f} seconds'.format(end - start))
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user