Improve solution for problem 47
This commit is contained in:
parent
ed7031df4d
commit
7489196be8
83
C/p047.c
83
C/p047.c
@ -15,88 +15,81 @@
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include "projecteuler.h"
|
||||
|
||||
#define N 150000
|
||||
|
||||
int count_distinct_factors(int n);
|
||||
|
||||
int *primes;
|
||||
int *count_factors(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, found = 0;
|
||||
int i, count, res;
|
||||
int *factors;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
if((factors = count_factors(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
fprintf(stderr, "Error! Count_factors function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Starting from 647, count the distinct prime factors of n, n+1, n+2 and n+3.
|
||||
* If they all have 4, the solution is found.*/
|
||||
for(i = 647; !found && i < N - 3; i++)
|
||||
{
|
||||
if(!primes[i] && !primes[i+1] && !primes[i+2] && !primes[i+3])
|
||||
{
|
||||
if(count_distinct_factors(i) == 4 && count_distinct_factors(i+1) == 4 &&
|
||||
count_distinct_factors(i+2) == 4 && count_distinct_factors(i+3) == 4)
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
count = 0;
|
||||
|
||||
free(primes);
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
if(factors[i] == 4)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
else
|
||||
{
|
||||
count = 0;
|
||||
}
|
||||
|
||||
if(count == 4)
|
||||
{
|
||||
res = i - 3;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 47\n");
|
||||
printf("Answer: %d\n", i-1);
|
||||
printf("Answer: %d\n", res);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count_distinct_factors(int n)
|
||||
/* Function using a modified sieve of Eratosthenes to count
|
||||
* the distinct prime factors of each number.*/
|
||||
int *count_factors(int n)
|
||||
{
|
||||
int i, count=0;
|
||||
int i = 2, j;
|
||||
int *factors;
|
||||
|
||||
/* Start checking if 2 is a prime factor of n. Then remove
|
||||
* all 2s factore.*/
|
||||
if(n % 2 == 0)
|
||||
if((factors = (int *)calloc(n, sizeof(int))) == NULL)
|
||||
{
|
||||
count++;
|
||||
|
||||
do
|
||||
{
|
||||
n /= 2;
|
||||
}while(n % 2 == 0);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Check all odd numbers i, if they're prime and they're a factor
|
||||
* of n, count them and then divide n for by i until all factors i
|
||||
* are eliminated. Stop the loop when n=1, i.e. all factors have
|
||||
* been found.*/
|
||||
for(i = 3; n > 1; i += 2)
|
||||
while(i < n / 2)
|
||||
{
|
||||
if(primes[i] && n % i == 0)
|
||||
if(factors[i] == 0)
|
||||
{
|
||||
count++;
|
||||
|
||||
do
|
||||
for(j = i; j < n; j += i)
|
||||
{
|
||||
n /= i;
|
||||
}while(n % i == 0);
|
||||
factors[j]++;
|
||||
}
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
return count;
|
||||
return factors;
|
||||
}
|
||||
|
@ -14,65 +14,46 @@
|
||||
# Find the first four consecutive integers to have four distinct prime factors each. What is the first of these numbers?
|
||||
|
||||
from timeit import default_timer
|
||||
from projecteuler import sieve
|
||||
|
||||
def count_distinct_factors(n):
|
||||
global primes
|
||||
count = 0
|
||||
# Function using a modified sieve of Eratosthenes to count
|
||||
# the prime factors of each number.
|
||||
def count_factors(n):
|
||||
factors = [0] * n
|
||||
i = 2
|
||||
|
||||
# Start checking if 2 is a prime factor of n. Then remove
|
||||
# all 2s factore.
|
||||
if n % 2 == 0:
|
||||
count = count + 1
|
||||
while i < n // 2:
|
||||
if factors[i] == 0:
|
||||
for j in range(i, n, i):
|
||||
factors[j] = factors[j] + 1
|
||||
i = i + 1
|
||||
|
||||
while True:
|
||||
n = n // 2
|
||||
|
||||
if n % 2 != 0:
|
||||
break
|
||||
|
||||
i = 3
|
||||
|
||||
# Check all odd numbers i, if they're prime and they're a factor
|
||||
# of n, count them and then divide n for by i until all factors i
|
||||
# are eliminated. Stop the loop when n=1, i.e. all factors have
|
||||
# been found.
|
||||
while n > 1:
|
||||
if primes[i] == 1 and n % i == 0:
|
||||
count = count + 1
|
||||
|
||||
while True:
|
||||
n = n // i
|
||||
|
||||
if n % i != 0:
|
||||
break
|
||||
i = i + 2
|
||||
|
||||
return count
|
||||
return factors
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
global primes
|
||||
|
||||
N = 150000
|
||||
|
||||
primes = sieve(N)
|
||||
found = 0
|
||||
i = 647
|
||||
factors = count_factors(N)
|
||||
|
||||
# Starting from 647, count the distinct prime factors of n, n+1, n+2 and n+3.
|
||||
# If they all have 4, the solution is found.
|
||||
while not found and i < N - 3:
|
||||
if primes[i] == 0 and primes[i+1] == 0 and primes[i+2] == 0 and primes[i+3] == 0:
|
||||
if count_distinct_factors(i) == 4 and count_distinct_factors(i+1) == 4 and count_distinct_factors(i+2) == 4 and count_distinct_factors(i+3) == 4:
|
||||
found = 1
|
||||
i = i + 1
|
||||
count = 0
|
||||
|
||||
# Find the first instance of four consecutive numbers
|
||||
# having four distinct prime factors.
|
||||
for i in range(N):
|
||||
if factors[i] == 4:
|
||||
count = count + 1
|
||||
else:
|
||||
count = 0
|
||||
|
||||
if count == 4:
|
||||
res = i - 3
|
||||
break
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 47')
|
||||
print('Answer: {}'.format(i-1))
|
||||
print('Answer: {}'.format(res))
|
||||
|
||||
print('Elapsed time: {:.9f} seconds'.format(end - start))
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user