Add type hints in problems 41-50

This commit is contained in:
daniele 2024-09-29 19:53:11 +02:00
parent 3a4f85db04
commit 44fd50f067
Signed by: fuxino
GPG Key ID: 981A2B2A3BBF5514
10 changed files with 35 additions and 33 deletions

View File

@ -9,7 +9,7 @@ from projecteuler import is_pandigital, is_prime, timing
@timing
def p041():
def p041() -> None:
# 8- and 9-digit pandigital numbers can't be prime, because
# 1+2+...+8=36, which is divisible by 3, and 36+9=45 which is
# also divisible by 3, and therefore the whole number is divisible

View File

@ -15,13 +15,14 @@ import sys
from projecteuler import timing
def is_triang(n):
def is_triang(n: int) -> bool:
i = 1
j = 1
while j <= n:
if n == j:
return True
i = i + 1
j = j + i
@ -29,7 +30,7 @@ def is_triang(n):
@timing
def p042():
def p042() -> None:
try:
with open('p042_words.txt', 'r', encoding='utf-8') as fp:
words = list(fp.readline().replace('"', '').split(','))

View File

@ -14,14 +14,14 @@
# d8d9d10=289 is divisible by 17
#
# Find the sum of all 0 to 9 pandigital numbers with this property.
from typing import Tuple
from itertools import permutations
from projecteuler import timing
# Function to check if the value has the desired property.
def has_property(n):
def has_property(n: Tuple[str, ...]) -> bool:
value = int(n[1]) * 100 + int(n[2]) * 10 + int(n[3])
if value % 2 != 0:
@ -65,15 +65,15 @@ def p043():
# Find all the permutations
perm = list(permutations('0123456789'))
sum_ = 0
_sum = 0
# For each permutation, check if it has the required property
for i in perm:
if has_property(i):
sum_ = sum_ + int(''.join(map(str, i)))
_sum = _sum + int(''.join(map(str, i)))
print('Project Euler, Problem 43')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -13,7 +13,7 @@ from projecteuler import is_pentagonal, timing
@timing
def p044():
def p044() -> None:
found = 0
n = 2

View File

@ -14,7 +14,7 @@ from projecteuler import is_pentagonal, timing
@timing
def p045():
def p045() -> None:
found = 0
i = 143

View File

@ -20,7 +20,7 @@ N = 10000
primes = sieve(N)
def goldbach(n):
def goldbach(n: int) -> bool:
# Check every prime smaller than n.
for i in range(3, n, 2):
if primes[i] == 1:
@ -44,7 +44,7 @@ def goldbach(n):
@timing
def p046():
def p046() -> None:
found = 0
i = 3

View File

@ -12,13 +12,14 @@
# 646 = 2 × 17 × 19.
#
# Find the first four consecutive integers to have four distinct prime factors each. What is the first of these numbers?
from typing import List
from projecteuler import timing
# Function using a modified sieve of Eratosthenes to count
# the distinct prime factors of each number.
def count_factors(n):
def count_factors(n: int) -> List[int]:
factors = [0] * n
i = 2
@ -32,7 +33,7 @@ def count_factors(n):
@timing
def p047():
def p047() -> None:
N = 150000
factors = count_factors(N)

View File

@ -8,16 +8,16 @@ from projecteuler import timing
@timing
def p048():
sum_ = 0
def p048() -> None:
_sum = 0
# Simply calculate the sum of the powers
for i in range(1, 1001):
power = i ** i
sum_ = sum_ + power
_sum = _sum + power
print('Project Euler, Problem 48')
print(f'Answer: {str(sum_)[-10:]}')
print(f'Answer: {str(_sum)[-10:]}')
if __name__ == '__main__':

View File

@ -12,7 +12,7 @@ from projecteuler import sieve, timing
@timing
def p049():
def p049() -> None:
N = 10000
primes = sieve(N)

View File

@ -14,12 +14,12 @@ from projecteuler import sieve, timing
@timing
def p050():
def p050() -> None:
N = 1000000
primes = sieve(N)
max_ = 0
_max = 0
max_p = 0
# Starting from a prime i, add consecutive primes until the
@ -31,32 +31,32 @@ def p050():
i = 2
j = i + 1
count = 1
sum_ = i
_sum = i
while j < N and sum_ < N:
while j < N and _sum < N:
if primes[j] == 1:
sum_ = sum_ + j
_sum = _sum + j
count = count + 1
if sum_ < N and primes[sum_] == 1 and count > max_:
max_ = count
max_p = sum
if _sum < N and primes[_sum] == 1 and count > _max:
_max = count
max_p = _sum
j = j + 1
for i in range(3, N, 2):
if primes[i] == 1:
count = 1
sum_ = i
_sum = i
j = i + 2
while j < N and sum_ < N:
while j < N and _sum < N:
if primes[j] == 1:
sum_ = sum_ + j
_sum = _sum + j
count = count + 1
if sum_ < N and primes[sum_] == 1 and count > max_:
max_ = count
max_p = sum_
if _sum < N and primes[_sum] == 1 and count > _max:
_max = count
max_p = _sum
j = j + 2