46 lines
1.4 KiB
Haskell

module ProjectEuler
( isPrime
, primeSieve
, lcmm
, digitSum
, sumProperDivisors
, countDivisors
, isPandigital
) where
import Data.Char (digitToInt)
import Data.List (nub)
import Data.List.Ordered (minus, unionAll)
isPrime :: (Integral n) => n -> Bool
isPrime 1 = False
isPrime 2 = True
isPrime 3 = True
isPrime n =
n > 0 && odd n && n `mod` 3 /= 0 && null [ x | x <- candidates, n `mod` x == 0 || n `mod` (x+2) == 0 ]
where candidates = [5,11..limit]
limit = floor(sqrt(fromIntegral n)) + 1
primeSieve :: (Integral n) => [n]
primeSieve = 2:3:[5,7..] `minus` unionAll [[p*p, p*p+2*p..] | p <- tail primeSieve]
lcmm :: (Integral n) => [n] -> n
lcmm values
| length values == 2 = lcm (head values) (last values)
| otherwise = lcm (head values) (lcmm (tail values))
digitSum :: (Integral a, Show a) => a -> Int
digitSum n = sum $ map digitToInt $ show n
sumProperDivisors :: (Integral a) => a -> a
sumProperDivisors n = sum [ if x /= y then x + y else x | x <- [2..floor $ sqrt $ fromIntegral n], let y = n `div` x, n `mod` x == 0 ] + 1
countDivisors :: (Integral a) => a -> Int
countDivisors n = length $ nub $ concat [ [x, n `div` x] | x <- [1..limit], n `mod` x == 0 ]
where limit = floor $ sqrt $ fromIntegral n
isPandigital :: Integer -> Bool
isPandigital n = n_length == length (nub n_char) && '0' `notElem` n_char && digitToInt (maximum n_char) == n_length
where n_char = show n
n_length = length n_char