87 lines
1.8 KiB
C

/* A number chain is created by continuously adding the square of the digits in a number to form a new number until it has been seen before.
*
* For example,
*
* 44 → 32 → 13 → 10 → 1 → 1
* 85 → 89 → 145 → 42 → 20 → 4 → 16 → 37 → 58 → 89
*
* Therefore any chain that arrives at 1 or 89 will become stuck in an endless loop. What is most amazing is that
* EVERY starting number will eventually arrive at 1 or 89.
*
* How many starting numbers below ten million will arrive at 89?*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 10000000
int chains[N] = {0};
int chain(int n);
int main(int argc, char **argv)
{
int i, count = 0;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
for(i = 1; i < N; i++)
{
/* Simply create a chain for each number and check if it ends at 89, saving
* the result so it can be reused.*/
if((chains[i] = chain(i)) == 89)
{
count++;
}
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 92\n");
printf("Answer: %d\n", count);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}
/* Recursively find the chain for n.*/
int chain(int n)
{
int tmp = 0, digit;
/* If n=1 or n=89, we reached the end of the chain.*/
if(n == 1)
{
return 1;
}
if(n == 89)
{
return 89;
}
/* If the chain for the current n has already been found,
* return the value.*/
if(chains[n] != 0)
{
return chains[n];
}
while(n > 0)
{
digit = n % 10;
tmp += digit * digit;
n /= 10;
}
return chain(tmp);
}