113 lines
2.5 KiB
C

/* In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by only moving to the right and down,
* is indicated in bold red and is equal to 2427.
*
* *131* 673 234 103 18
* *201* *96* *342* 965 150
* 630 803 *746* *422* 111
* 537 699 497 *121* 956
* 805 732 524 *37* *331*
*
* Find the minimal path sum, in matrix.txt, a 31K text file containing a 80 by 80 matrix, from the top left to the bottom right
* by only moving right and down.*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <limits.h>
int sum_paths(int **matrix, int m, int n);
int main(int argc, char **argv)
{
int i, j, dist;
int **matrix;
double elapsed;
struct timespec start, end;
FILE *fp;
clock_gettime(CLOCK_MONOTONIC, &start);
if((fp = fopen("matrix.txt", "r")) == NULL)
{
fprintf(stderr, "Error while opening file %s\n", "matrix.txt");
return 1;
}
if((matrix = (int **)malloc(80*sizeof(int *))) == NULL)
{
fprintf(stderr, "Error while allocating memory\n");
return 1;
}
for(i = 0; i < 80; i++)
{
if((matrix[i] = (int *)malloc(80*sizeof(int))) == NULL)
{
fprintf(stderr, "Error while allocating memory\n");
return 1;
}
}
for(i = 0; i < 80; i++)
{
for(j = 0; j < 80; j++)
{
fscanf(fp, "%d,", &matrix[i][j]);
}
}
fclose(fp);
dist = sum_paths(matrix, 80, 80);
for(i = 0; i < 80; i++)
{
free(matrix[i]);
}
free(matrix);
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 81\n");
printf("Answer: %d\n", dist);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}
/* Get the shortest path starting from the bottom right corner
* and going backwards.*/
int sum_paths(int **matrix, int m, int n)
{
int i, j;
for(i = m - 2; i >= 0; i--)
{
matrix[m-1][i] += matrix[m-1][i+1];
matrix[i][m-1] += matrix[i+1][m-1];
}
for(i = m - 2; i >= 0; i--)
{
for(j = n - 2; j >= 0; j--)
{
if(matrix[i][j+1] > matrix[i+1][j])
{
matrix[i][j] += matrix[i+1][j];
}
else
{
matrix[i][j] += matrix[i][j+1];
}
}
}
return matrix[0][0];
}