67 lines
1.8 KiB
C

/* Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
*
* If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get:
*
* 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
*
* It can be seen that 2/5 is the fraction immediately to the left of 3/7.
*
* By listing the set of reduced proper fractions for d ≤ 1,000,000 in ascending order of size, find the numerator
* of the fraction immediately to the left of 3/7.*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "projecteuler.h"
#define N 1000000
int main(int argc, char **argv)
{
int i, j, n, d, max_n;
double elapsed, max = 0.0;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
/* For each denominator q, we need to find the biggest numerator p for which
* p/q<a/b, where a/b is 3/7 for this problem. So:
* pb<aq
* pb<=aq-1
* p<=(aq-1)/b
* So we can set p=(3*q-1)/7 (using integer division).*/
for(i = 2; i <= N; i++)
{
j = (3 * i - 1) / 7;
if((double)j / i > max)
{
n = j;
d = i;
max = (double)n / d;
/* Reduce the fraction if it's not already reduced.*/
if(gcd(i, j) > 1)
{
n /= gcd(i, j);
d /= gcd(i, j);
}
max_n = n;
}
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 71\n");
printf("Answer: %d\n", max_n);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}