220 lines
5.2 KiB
C
220 lines
5.2 KiB
C
/* Consider the following "magic" 3-gon ring, filled with the numbers 1 to 6, and each line adding to nine.
|
|
*
|
|
* 4
|
|
* \
|
|
* \
|
|
* 3
|
|
* / \
|
|
* / \
|
|
* 1------2------6
|
|
* /
|
|
* /
|
|
* 5
|
|
*
|
|
* Working clockwise, and starting from the group of three with the numerically lowest external node (4,3,2 in this example),
|
|
* each solution can be described uniquely. For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3.
|
|
*
|
|
* It is possible to complete the ring with four different totals: 9, 10, 11, and 12. There are eight solutions in total.
|
|
*
|
|
* Total Solution Set
|
|
* 9 4,2,3; 5,3,1; 6,1,2
|
|
* 9 4,3,2; 6,2,1; 5,1,3
|
|
* 10 2,3,5; 4,5,1; 6,1,3
|
|
* 10 2,5,3; 6,3,1; 4,1,5
|
|
* 11 1,4,6; 3,6,2; 5,2,4
|
|
* 11 1,6,4; 5,4,2; 3,2,6
|
|
* 12 1,5,6; 2,6,4; 3,4,5
|
|
* 12 1,6,5; 3,5,4; 2,4,6
|
|
*
|
|
* By concatenating each group it is possible to form 9-digit strings; the maximum string for a 3-gon ring is 432621513.
|
|
*
|
|
* Using the numbers 1 to 10, and depending on arrangements, it is possible to form 16- and 17-digit strings. What is the maximum 16-digit string
|
|
* for a "magic" 5-gon ring?
|
|
*
|
|
* O
|
|
* \
|
|
* O
|
|
* / \ O
|
|
* / \ /
|
|
* O O
|
|
* / \ /
|
|
* O O--O---O
|
|
* \
|
|
* O
|
|
*/
|
|
|
|
#define _POSIX_C_SOURCE 199309L
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
#include "projecteuler.h"
|
|
|
|
int *eval_ring(int **ring, int n);
|
|
long int array_to_long(int *n, int len);
|
|
int compare(void *a, void *b);
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int i;
|
|
int *eval, **ring;
|
|
long int n, max = 0;
|
|
double elapsed;
|
|
struct timespec start, end;
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &start);
|
|
|
|
if((ring = (int **)malloc(10*sizeof(int *))) == NULL)
|
|
{
|
|
fprintf(stderr, "Error while allocating memory\n");
|
|
return 1;
|
|
}
|
|
|
|
for(i = 0; i < 10; i++)
|
|
{
|
|
if((ring[i] = (int *)malloc(sizeof(int))) == NULL)
|
|
{
|
|
fprintf(stderr, "Error while allocating memory\n");
|
|
return 1;
|
|
}
|
|
*ring[i] = i + 1;
|
|
}
|
|
|
|
/* Check if the first permutation of values is a possible solution.*/
|
|
eval = eval_ring(ring, 5);
|
|
|
|
/* Convert the vector into an integer number.*/
|
|
n = array_to_long(eval, 15);
|
|
|
|
if(n > max)
|
|
{
|
|
max = n;
|
|
}
|
|
|
|
free(eval);
|
|
|
|
/* Generate all possible permutations, for each one check if
|
|
* it's a possible solution for the ring and save the maximum.*/
|
|
while(next_permutation((void **)ring, 10, compare) != -1)
|
|
{
|
|
eval = eval_ring(ring, 5);
|
|
|
|
n = array_to_long(eval, 15);
|
|
|
|
if(n > max)
|
|
{
|
|
max = n;
|
|
}
|
|
|
|
free(eval);
|
|
}
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &end);
|
|
|
|
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
|
|
|
printf("Project Euler, Problem 68\n");
|
|
printf("Answer: %ld\n", max);
|
|
|
|
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int compare(void *a, void *b)
|
|
{
|
|
int *n1, *n2;
|
|
|
|
n1 = (int *)a;
|
|
n2 = (int *)b;
|
|
|
|
return *n1 - *n2;
|
|
}
|
|
|
|
/* Function to evaluate the ring. The ring is represented as a vector of 2*n elements,
|
|
* the first n elements represent the external nodes of the ring, the next n elements
|
|
* represent the internal ring.*/
|
|
int *eval_ring(int **ring, int n)
|
|
{
|
|
int i, j, magic_val, val;
|
|
int *res;
|
|
|
|
for(i = 1; i < n; i++)
|
|
{
|
|
/* We need to start from the lowest external node, so if
|
|
* the first element in the vector is not the lowest of
|
|
* the first n elements (the external elements), the configuration
|
|
* is not a valid one.*/
|
|
if(*ring[i] < *ring[0])
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if((res = (int *)malloc(3*n*sizeof(int))) == NULL)
|
|
{
|
|
fprintf(stderr, "Error while allocating memory\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Each group of three must have the same value.*/
|
|
magic_val = *ring[0] + *ring[n] + *ring[n+1];
|
|
|
|
for(i = 0, j = 0; i < n; i++, j += 3)
|
|
{
|
|
/* We need to find the maximum 16-digit string, this is
|
|
* possible only if the element "10" is used only once,
|
|
* i.e. if it's one of the external nodes.*/
|
|
if(*ring[n+i] == 10 || *ring[n+(i+1)%n] == 10)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/* Check that the value of the current three-element group
|
|
* is the "magic" value.*/
|
|
val = *ring[i] + *ring[n+i] + *ring[n+(i+1)%n];
|
|
|
|
if(val != magic_val)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/* Save the current element group in the result string.*/
|
|
res[j] = *ring[i];
|
|
res[j+1] = *ring[n+i];
|
|
res[j+2] = *ring[n+(i+1)%n];
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Function to convert the vector into a long int.*/
|
|
long int array_to_long(int *n, int len)
|
|
{
|
|
int i, k = 0;
|
|
long int res = 0;
|
|
|
|
if(n == NULL)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
for(i = len - 1; i >= 0; i--)
|
|
{
|
|
res += n[i] * pow(10, k);
|
|
|
|
if(n[i] >= 10)
|
|
{
|
|
k += 2;
|
|
}
|
|
else
|
|
{
|
|
k++;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|