98 lines
2.3 KiB
C

/* The prime 41, can be written as the sum of six consecutive primes:
*
* 41 = 2 + 3 + 5 + 7 + 11 + 13
*
* This is the longest sum of consecutive primes that adds to a prime below one-hundred.
*
* The longest sum of consecutive primes below one-thousand that adds to a prime, contains 21 terms, and is equal to 953.
*
* Which prime, below one-million, can be written as the sum of the most consecutive primes?*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "projecteuler.h"
#define N 1000000
int main(int argc, char **argv)
{
int i, j, max = 0, max_p = 0, sum, count;
int *primes;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
if((primes = sieve(N)) == NULL)
{
fprintf(stderr, "Error! Sieve function returned NULL\n");
return 1;
}
/* Starting from a prime i, add consecutive primes until the
* sum exceeds the limit, every time the sum is also a prime
* save the value and the count if the count is larger than the
* current maximum. Repeat for all primes below N.
* A separate loop is used for i=2, so later only odd numbers are
* checked for primality.*/
i = 2;
count = 1;
sum = i;
for(j = i + 1; j < N && sum < N; j++)
{
if(primes[j])
{
sum += j;
count++;
if(sum < N && primes[sum] && count > max)
{
max = count;
max_p = sum;
}
}
}
for(i = 3; i < N; i += 2)
{
if(primes[i])
{
count = 1;
sum = i;
for(j = i + 2; j < N && sum < N; j += 2)
{
if(primes[j])
{
sum += j;
count++;
if(sum < N && primes[sum] && count > max)
{
max = count;
max_p = sum;
}
}
}
}
}
free(primes);
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 50\n");
printf("Answer: %d\n", max_p);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}