92 lines
2.1 KiB
C

/* The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right,
* and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
*
* Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
*
* NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "projecteuler.h"
int is_tr_prime(int n);
int main(int argc, char **argv)
{
int i = 0, n = 1, sum = 0;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
/* Check every number until 11 truncatable primes are found.*/
while(i < 11)
{
if(is_tr_prime(n))
{
sum += n;
i++;
}
n++;
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 37\n");
printf("Answer: %d\n", sum);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}
int is_tr_prime(int n)
{
int i, tmp;
/* One-digit numbers and non-prime numbers are
* not truncatable primes.*/
if(n < 11 || !is_prime(n))
{
return 0;
}
/* Remove one digit at a time from the right and check
* if the resulting number is prime. Return 0 if it isn't.*/
tmp = n / 10;
while(tmp > 0)
{
if(!is_prime(tmp))
{
return 0;
}
tmp /= 10;
}
/* Starting from the last digit, check if it's prime, then
* add back one digit at a time on the left and check if it
* is prime. Return 0 when it isn't.*/
i = 10;
tmp = n % i;
while(tmp != n)
{
if(!is_prime(tmp))
{
return 0;
}
i *= 10;
tmp = n % i;
}
/* If it gets here, the number is truncatable prime.*/
return 1;
}