103 lines
2.2 KiB
C

/* The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
*
* There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
*
* How many circular primes are there below one million?*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "projecteuler.h"
#define N 1000000
int is_circular_prime(int n);
int *primes;
int main(int argc, char **argv)
{
int i, count = 13;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
/* Calculate all primes below one million, then check if they're circular.*/
if((primes = sieve(N)) == NULL)
{
fprintf(stderr, "Error! Sieve function returned NULL\n");
return 1;
}
/* Starting from 101 because we already know that there are 13 circular primes below 100.*/
for(i = 101; i < 1000000; i += 2)
{
if(is_circular_prime(i))
{
count++;
}
}
free(primes);
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 35\n");
printf("Answer: %d\n", count);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}
int is_circular_prime(int n)
{
int i, tmp, count;
/* If n is not prime, it's obviously not a circular prime.*/
if(primes[n] == 0)
{
return 0;
}
/* The primes below 10 are circular primes.*/
if(primes[n] == 1 && n < 10)
{
return 1;
}
tmp = n;
count = 0;
while(tmp > 0)
{
/* If the number has one or more even digits, it can't be a circular prime.
* because at least one of the rotations will be even.*/
if(tmp % 2 == 0)
{
return 0;
}
/* Count the number of digits.*/
count++;
tmp /= 10;
}
for(i = 1; i < count; i++)
{
/* Generate rotations and check if they're prime.*/
n = n % (int)pow(10, count-1) * 10 + n / (int)pow(10, count-1);
if(primes[n] == 0)
{
return 0;
}
}
return 1;
}