81 lines
2.1 KiB
C

/* The following iterative sequence is defined for the set of positive integers:
*
* n → n/2 (n is even)
* n → 3n + 1 (n is odd)
*
* Using the rule above and starting with 13, we generate the following sequence:
*
* 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
*
* It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem),
* it is thought that all starting numbers finish at 1.
*
* Which starting number, under one million, produces the longest chain?
*
* NOTE: Once the chain starts the terms are allowed to go above one million.*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 1000000
int collatz_length(long int n);
int collatz_found[N] = {0};
int main(int argc, char **argv)
{
int i, count, max = 0, max_l = 0;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
for(i = 1; i < N; i++)
{
/* For each number from 1 to 1000000, find the length of the sequence
* and save its value, so that it can be used for the next numbers.*/
count = collatz_length(i);
collatz_found[i] = count;
if(count > max_l)
{
max_l = count;
max = i;
}
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 14\n");
printf("Answer: %d\n", max);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}
/* Recursive function to calculate the Collatz sequence for n.
* If n is even, Collatz(n)=1+Collatz(n/2), if n is odd
* Collatz(n)=1+Collatz(3*n+1).*/
int collatz_length(long int n)
{
if(n == 1)
return 1;
/* If Collatz(n) has been previously calculated,
* just return the value.*/
if(n < N && collatz_found[n])
return collatz_found[n];
if(n % 2 == 0)
return 1 + collatz_length(n/2);
else
return 1 + collatz_length(3*n+1);
}