60 lines
1.5 KiB
C

/* The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.
* The first ten terms would be:
*
* 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
*
* Let us list the factors of the first seven triangle numbers:
*
* 1: 1
* 3: 1,3
* 6: 1,2,3,6
* 10: 1,2,5,10
* 15: 1,3,5,15
* 21: 1,3,7,21
* 28: 1,2,4,7,14,28
*
* We can see that 28 is the first triangle number to have over five divisors.
*
* What is the value of the first triangle number to have over five hundred divisors?*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "projecteuler.h"
int main(int argc, char **argv)
{
int i = 0, finished = 0, count, triang = 0;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
/* Generate all triangle numbers until the first one with more than 500 divisors is found.*/
while(!finished)
{
i++;
triang += i;
/* Use the function implemented in projecteuler.c to count divisors of a number.*/
count = count_divisors(triang);
if(count > 500)
{
finished = 1;
}
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 12\n");
printf("Answer: %d\n", triang);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}