50 lines
1.2 KiB
C

/* Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
*
* 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
*
* By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 4000000
int main(int argc, char **argv)
{
int fib0 = 1, fib1 = 2, fib2, sum = 2;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
fib2 = fib0 + fib1;
/* Simple brute-force approach: generate every value in the Fibonacci
* sequence smaller than 4 million and if it's even add it to the total.*/
while(fib2 <= N)
{
if(fib2 % 2 == 0)
{
sum += fib2;
}
fib0 = fib1;
fib1 = fib2;
fib2 = fib0 + fib1;
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 2\n");
printf("Answer: %d\n", sum);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}