Daniele Fucini 3a09f3d4f5
Add more solutions and minor improvements
Added solutions for problem 66, 67, 68, 69 and 70 in C and python.
Also, minor improvements to the code for a few older problems.
2019-09-29 13:26:34 +02:00

69 lines
1.8 KiB
Python

#!/usr/bin/python3
# By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
#
# 3
# 7 4
# 2 4 6
# 8 5 9 3
#
# That is, 3 + 7 + 4 + 9 = 23.
#
# Find the maximum total from top to bottom of the triangle below:
#
# 75
# 95 64
# 17 47 82
# 18 35 87 10
# 20 04 82 47 65
# 19 01 23 75 03 34
# 88 02 77 73 07 63 67
# 99 65 04 28 06 16 70 92
# 41 41 26 56 83 40 80 70 33
# 41 48 72 33 47 32 37 16 94 29
# 53 71 44 65 25 43 91 52 97 51 14
# 70 11 33 28 77 73 17 78 39 68 17 57
# 91 71 52 38 17 14 91 43 58 50 27 29 48
# 63 66 04 68 89 53 67 30 73 16 69 87 40 31
# 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
#
# NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge
# with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
from timeit import default_timer
from projecteuler import find_max_path
def main():
start = default_timer()
try:
fp = open('triang.txt', 'r')
except:
print('Error while opening file {}'.format('triang.txt'))
exit(1)
triang = list()
for line in fp:
triang.append(line.strip('\n').split())
fp.close()
l = len(triang)
for i in range(l):
triang[i] = list(map(int, triang[i]))
# Use the function implemented in projecteuler.c to find the maximum path.
max_ = find_max_path(triang, 15)
end = default_timer()
print('Project Euler, Problem 18')
print('Answer: {}'.format(max_))
print('Elapsed time: {:.9f} seconds'.format(end - start))
if __name__ == '__main__':
main()