204 lines
5.6 KiB
Python
204 lines
5.6 KiB
Python
# Su Doku (Japanese meaning number place) is the name given to a popular puzzle concept. Its origin is unclear,
|
|
# but credit must be attributed to Leonhard Euler who invented a similar, and much more difficult, puzzle idea called Latin Squares.
|
|
# The objective of Su Doku puzzles, however, is to replace the blanks (or zeros) in a 9 by 9 grid in such that each row, column,
|
|
# and 3 by 3 box contains each of the digits 1 to 9. Below is an example of a typical starting puzzle grid and its solution grid.
|
|
#
|
|
# 0 0 3 0 2 0 6 0 0 4 8 3 9 2 1 6 5 7
|
|
# 9 0 0 3 0 5 0 0 1 9 6 7 3 4 5 8 2 1
|
|
# 0 0 1 8 0 6 4 0 0 2 5 1 8 7 6 4 9 3
|
|
#
|
|
# 0 0 8 1 0 2 9 0 0 5 4 8 1 3 2 9 7 6
|
|
# 7 0 0 0 0 0 0 0 8 7 2 9 5 6 4 1 3 8
|
|
# 0 0 6 7 0 8 2 0 0 1 3 6 7 9 8 2 4 5
|
|
#
|
|
# 0 0 2 6 0 9 5 0 0 3 7 2 6 8 9 5 1 4
|
|
# 8 0 0 2 0 3 0 0 9 8 1 4 2 5 3 7 6 9
|
|
# 0 0 5 0 1 0 3 0 0 6 9 5 4 1 7 3 8 2
|
|
#
|
|
# A well constructed Su Doku puzzle has a unique solution and can be solved by logic, although it may be necessary to employ
|
|
# "guess and test" methods in order to eliminate options (there is much contested opinion over this). The complexity of the search
|
|
# determines the difficulty of the puzzle; the example above is considered easy because it can be solved by straight forward direct deduction.
|
|
#
|
|
# The 6K text file, sudoku.txt, contains fifty different Su Doku puzzles ranging in difficulty, but all with unique solutions
|
|
# (the first puzzle in the file is the example above).
|
|
#
|
|
# By solving all fifty puzzles find the sum of the 3-digit numbers found in the top left corner of each solution grid;
|
|
# for example, 483 is the 3-digit number found in the top left corner of the solution grid above.
|
|
|
|
import sys
|
|
from itertools import islice
|
|
|
|
from projecteuler import timing
|
|
|
|
|
|
def check(sudoku, i, j, n):
|
|
for k in range(9):
|
|
if k != j and sudoku[i][k] == n:
|
|
return False
|
|
|
|
if k != i and sudoku[k][j] == n:
|
|
return False
|
|
|
|
ii = 3 * (i // 3)
|
|
jj = 3 * (j // 3)
|
|
|
|
for k in range(3):
|
|
for w in range(3):
|
|
if ii + k != i and jj + w != j and sudoku[ii+k][jj+w] == n:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def solve_recursive(sudoku, step):
|
|
if step == 81:
|
|
return True
|
|
|
|
i = step // 9
|
|
j = step % 9
|
|
|
|
if sudoku[i][j] != 0:
|
|
if solve_recursive(sudoku, step + 1):
|
|
return True
|
|
else:
|
|
for k in range(1, 10):
|
|
sudoku[i][j] = k
|
|
|
|
if check(sudoku, i, j, k):
|
|
if solve_recursive(sudoku, step + 1):
|
|
return True
|
|
|
|
sudoku[i][j] = 0
|
|
|
|
sudoku[i][j] = 0
|
|
|
|
return False
|
|
|
|
|
|
def line_complete(sudoku, i):
|
|
for n in range(9):
|
|
if sudoku[i][n] == 0:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def column_complete(sudoku, j):
|
|
for n in range(9):
|
|
if sudoku[n][j] == 0:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def solve_sudoku(sudoku):
|
|
for w in range(4):
|
|
for i in range(9):
|
|
for j in range(9):
|
|
if sudoku[i][j] == 0:
|
|
count = 0
|
|
|
|
for k in range(1, 10):
|
|
if count >= 2:
|
|
break
|
|
|
|
sudoku[i][j] = k
|
|
|
|
if check(sudoku, i, j, k):
|
|
count += 1
|
|
val = k
|
|
|
|
if count == 1:
|
|
sudoku[i][j] = val
|
|
else:
|
|
sudoku[i][j] = 0
|
|
|
|
for i in range(9):
|
|
for k in range(1, 10):
|
|
if line_complete(sudoku, i):
|
|
break
|
|
|
|
count = 0
|
|
|
|
for j in range(9):
|
|
if count >= 2:
|
|
break
|
|
|
|
if sudoku[i][j] == 0:
|
|
sudoku[i][j] = k
|
|
|
|
if check(sudoku, i, j, k):
|
|
count += 1
|
|
val = j
|
|
|
|
sudoku[i][j] = 0
|
|
|
|
if count == 1:
|
|
sudoku[i][val] = k
|
|
|
|
for j in range(9):
|
|
for k in range(1, 10):
|
|
if column_complete(sudoku, j):
|
|
break
|
|
|
|
count = 0
|
|
|
|
for i in range(9):
|
|
if count >= 2:
|
|
break
|
|
|
|
if sudoku[i][j] == 0:
|
|
sudoku[i][j] = k
|
|
|
|
if check(sudoku, i, j, k):
|
|
count += 1
|
|
val = i
|
|
|
|
sudoku[i][j] = 0
|
|
|
|
if count == 1:
|
|
sudoku[val][j] = k
|
|
|
|
return solve_recursive(sudoku, 0)
|
|
|
|
|
|
@timing
|
|
def p096():
|
|
try:
|
|
with open('p096_sudoku.txt', 'r', encoding='utf-8') as fp:
|
|
sudokus = fp.readlines()
|
|
except FileNotFoundError:
|
|
print('Error while opening file p096_sudoku.txt')
|
|
sys.exit(1)
|
|
|
|
sum_ = 0
|
|
start = 0
|
|
stop = 10
|
|
|
|
while stop <= len(sudokus):
|
|
sudoku = islice(sudokus, start, stop)
|
|
sudoku = [line.strip() for line in list(sudoku)[1:]]
|
|
sudoku = [list(line) for line in sudoku]
|
|
|
|
for i, _ in enumerate(sudoku):
|
|
sudoku[i] = [int(n) for n in sudoku[i]]
|
|
|
|
if not solve_sudoku(sudoku):
|
|
print('Bad sudoku grid')
|
|
|
|
sys.exit(1)
|
|
|
|
partial = int(sudoku[0][0]) * 100 + \
|
|
int(sudoku[0][1]) * 10 + int(sudoku[0][2])
|
|
sum_ += partial
|
|
|
|
start += 10
|
|
stop += 10
|
|
|
|
print('Project Euler, Problem 96')
|
|
print(f'Answer: {sum_}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
p096()
|