68 lines
1.5 KiB
C

/* We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital
* and is also prime.
*
* What is the largest n-digit pandigital prime that exists?*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "projecteuler.h"
int count_digits(int n);
int main(int argc, char **argv)
{
/* 8- and 9-digit pandigital numbers can't be prime, because
* 1+2+...+8=36, which is divisible by 3, and 36+9=45 which is
* also divisible by 3, and therefore the whole number is divisible
* by 3. So we can start from the largest 7-digit pandigital number,
* until we find a prime.*/
int i = 7654321;
double elapsed;
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
while(i > 0)
{
if(is_pandigital(i, count_digits(i)) && is_prime(i))
{
break;
}
/*Skipping the even numbers.*/
i -= 2;
}
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 41\n");
printf("Answer: %d\n", i);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}
int count_digits(int n)
{
int i = 0;
if(n == 0)
{
return 1;
}
while(n > 0)
{
i++;
n /= 10;
}
return i;
}