91 lines
2.3 KiB
C

/* A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
*
* 1/2 = 0.5
* 1/3 = 0.(3)
* 1/4 = 0.25
* 1/5 = 0.2
* 1/6 = 0.1(6)
* 1/7 = 0.(142857)
* 1/8 = 0.125
* 1/9 = 0.(1)
* 1/10 = 0.1
*
* Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
*
* Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.*/
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <gmp.h>
int main(int argc, char **argv)
{
int i, j, n, max = 0, max_n = 0;
double elapsed;
struct timespec start, end;
mpz_t k, div;
clock_gettime(CLOCK_MONOTONIC, &start);
mpz_init(k);
mpz_init(div);
for(i = 2; i < 1000; i++)
{
j = i;
/* The repeating cycle of 1/(2^a*5^b*p^c*...) is equal to
* that of 1/p^c*..., so factors 2 and 5 can be eliminated.*/
while(j % 2 == 0 && j > 1)
j /= 2;
while(j % 5 == 0 && j > 1)
j /= 5;
/* If the denominator had only factors 2 and 5, there is no
* repeating cycle.*/
if(j == 1)
n = 0;
else
{
n = 1;
mpz_set_ui(k, 9);
mpz_set_ui(div, j);
/* After eliminating factors 2s and 5s, the length of the repeating cycle
* of 1/d is the smallest n for which k=10^n-1/d is an integer. So we start
* with k=9, then k=99, k=999 and so on until k is divisible by d.
* The number of digits of k is the length of the repeating cycle.*/
while(!mpz_divisible_p(k, div))
{
n++;
mpz_mul_ui(k, k, 10);
mpz_add_ui(k, k, 9);
}
if(n > max)
{
max = n;
max_n = i;
}
}
}
mpz_clears(k, div, NULL);
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
printf("Project Euler, Problem 26\n");
printf("Answer: %d\n", max_n);
printf("Elapsed time: %.9lf seconds\n", elapsed);
return 0;
}