module ProjectEuler ( isPrime , digitSum , sumProperDivisors , countDivisors ) where import Data.Char (digitToInt) import Data.List (nub) isPrime :: (Integral n) => n -> Bool isPrime 1 = False isPrime 2 = True isPrime 3 = True isPrime n = n `mod` 2 /= 0 && n `mod` 3 /= 0 && null [ x | x <- candidates, n `mod` x == 0 || n `mod` (x+2) == 0 ] where candidates = [5,11..limit] limit = floor(sqrt(fromIntegral n)) + 1 digitSum :: (Integral a, Show a) => a -> Int digitSum n = sum $ map digitToInt $ show n sumProperDivisors :: (Integral a) => a -> a sumProperDivisors n = sum [ if x /= y then x + y else x | x <- [2..floor $ sqrt $ fromIntegral n], let y = n `div` x, n `mod` x == 0 ] + 1 countDivisors :: (Integral a) => a -> Int countDivisors n = length $ nub $ concat [ [x, n `div` x] | x <- [1..limit], n `mod` x == 0 ] where limit = floor $ sqrt $ fromIntegral n