/* 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. * * Find the sum of all numbers which are equal to the sum of the factorial of their digits. * * Note: as 1! = 1 and 2! = 2 are not sums they are not included.*/ #define _POSIX_C_SOURCE 199309L #include #include #include #include int main(int argc, char **argv) { int i; unsigned long int digit; double elapsed; struct timespec start, end; mpz_t a, b, q, sum_f, sum, factorials[10]; clock_gettime(CLOCK_MONOTONIC, &start); mpz_init_set_ui(a, 10); mpz_init_set_ui(sum, 0); mpz_inits(b, q, sum_f, sum, NULL); for(i = 0; i < 10; i++) { mpz_init_set_ui(factorials[i], 1); } /* Pre-calculate factorials of each digit from 0 to 9.*/ for(i = 2; i < 10; i++) { mpz_fac_ui(factorials[i], i); } /* 9!*7<9999999, so 9999999 is certainly un upper bound.*/ while(mpz_cmp_ui(a, 9999999) < 0) { mpz_set(b, a); mpz_set_ui(sum_f, 0); while(mpz_cmp_ui(b, 0)) { digit = mpz_fdiv_qr_ui(b, q, b, 10); mpz_add(sum_f, sum_f, factorials[digit]); } if(!mpz_cmp(a, sum_f)) { mpz_add(sum, sum, a); } mpz_add_ui(a, a, 1); } mpz_clears(a, b, q, sum_f, NULL); for(i = 0; i < 10; i++) { mpz_clear(factorials[i]); } clock_gettime(CLOCK_MONOTONIC, &end); elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000; printf("Project Euler, Problem 34\n"); gmp_printf("Answer: %Zd\n", sum); printf("Elapsed time: %.9lf seconds\n", elapsed); mpz_clear(sum); return 0; }