Compare commits
10 Commits
f09f056c87
...
71e426257e
Author | SHA1 | Date | |
---|---|---|---|
71e426257e | |||
bebadf9437 | |||
3e09b8147e | |||
71783f4043 | |||
751673989c | |||
6ebb82fb8c | |||
7c72d0d5f1 | |||
81ee2c7f5a | |||
74bafa460a | |||
474650f139 |
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
Python/__pycache__
|
||||
ProblemsOverviews/*
|
||||
Haskell/.stack-work
|
||||
|
40
C/p001.c
40
C/p001.c
@ -2,36 +2,38 @@
|
||||
*
|
||||
* Find the sum of all the multiples of 3 or 5 below 1000.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Simple brute-force approach: try every number between 3 and 999,
|
||||
* check if it's a multiple of 3 or 5, if yes add it to the total.*/
|
||||
for(i = 3; i < 1000; i++)
|
||||
{
|
||||
if (i % 3 == 0 || i % 5 == 0)
|
||||
{
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
/* Simple brute-force approach: try every number between 3 and 999,
|
||||
* check if it's a multiple of 3 or 5, if yes add it to the total.*/
|
||||
for(i = 3; i < 1000; i++)
|
||||
{
|
||||
if (i % 3 == 0 || i % 5 == 0)
|
||||
{
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 1\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 1\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
48
C/p002.c
48
C/p002.c
@ -4,6 +4,8 @@
|
||||
*
|
||||
* By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -12,36 +14,36 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int fib0 = 1, fib1 = 2, fib2, sum = 2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int fib0 = 1, fib1 = 2, fib2, sum = 2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
fib2 = fib0 + fib1;
|
||||
fib2 = fib0 + fib1;
|
||||
|
||||
/* Simple brute-force approach: generate every value in the Fibonacci
|
||||
* sequence smaller than 4 million and if it's even add it to the total.*/
|
||||
while(fib2 <= N)
|
||||
{
|
||||
if(fib2 % 2 == 0)
|
||||
{
|
||||
sum += fib2;
|
||||
}
|
||||
/* Simple brute-force approach: generate every value in the Fibonacci
|
||||
* sequence smaller than 4 million and if it's even add it to the total.*/
|
||||
while(fib2 <= N)
|
||||
{
|
||||
if(fib2 % 2 == 0)
|
||||
{
|
||||
sum += fib2;
|
||||
}
|
||||
|
||||
fib0 = fib1;
|
||||
fib1 = fib2;
|
||||
fib2 = fib0 + fib1;
|
||||
}
|
||||
fib0 = fib1;
|
||||
fib1 = fib2;
|
||||
fib2 = fib0 + fib1;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 2\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 2\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
86
C/p003.c
86
C/p003.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* What is the largest prime factor of the number 600851475143?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -11,26 +13,26 @@ long int max_prime_factor(long int num);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
long int res;
|
||||
long int num = 600851475143;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
long int res;
|
||||
long int num = 600851475143;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Use a function to calculate the largest prime factor.*/
|
||||
res = max_prime_factor(num);
|
||||
/* Use a function to calculate the largest prime factor.*/
|
||||
res = max_prime_factor(num);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 3\n");
|
||||
printf("Answer: %ld\n", res);
|
||||
printf("Project Euler, Problem 3\n");
|
||||
printf("Answer: %ld\n", res);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Recursive approach: if num is prime, return num, otherwise
|
||||
@ -38,39 +40,39 @@ int main(int argc, char **argv)
|
||||
* by its prime factors until only the largest remains.*/
|
||||
long int max_prime_factor(long int num)
|
||||
{
|
||||
long int i;
|
||||
long int i;
|
||||
|
||||
/* Use function defined in projecteuler.c to check if a number is prime.*/
|
||||
if(is_prime(num))
|
||||
{
|
||||
return num;
|
||||
}
|
||||
/* Use function defined in projecteuler.c to check if a number is prime.*/
|
||||
if(is_prime(num))
|
||||
{
|
||||
return num;
|
||||
}
|
||||
|
||||
/* If num is even, find the largest prime factor of num/2.*/
|
||||
if(num % 2 == 0)
|
||||
{
|
||||
return max_prime_factor(num/2);
|
||||
}
|
||||
else
|
||||
{
|
||||
i = 3;
|
||||
|
||||
while(1)
|
||||
{
|
||||
/* If num is divisible by i and i is prime, find largest prime
|
||||
* factor of num/i.*/
|
||||
if(num % i == 0)
|
||||
{
|
||||
if(is_prime(i))
|
||||
/* If num is even, find the largest prime factor of num/2.*/
|
||||
if(num % 2 == 0)
|
||||
{
|
||||
return max_prime_factor(num/2);
|
||||
}
|
||||
else
|
||||
{
|
||||
i = 3;
|
||||
|
||||
while(1)
|
||||
{
|
||||
/* If num is divisible by i and i is prime, find largest prime
|
||||
* factor of num/i.*/
|
||||
if(num % i == 0)
|
||||
{
|
||||
return max_prime_factor(num/i);
|
||||
if(is_prime(i))
|
||||
{
|
||||
return max_prime_factor(num/i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
||||
/* Should never get here.*/
|
||||
return -1;
|
||||
/* Should never get here.*/
|
||||
return -1;
|
||||
}
|
||||
|
52
C/p004.c
52
C/p004.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* Find the largest palindrome made from the product of two 3-digit numbers.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -9,36 +11,36 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, max = 0, num;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, max = 0, num;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Using a brute-force approach: generate every product of 3-digit numbers
|
||||
* and check if it's palindrome. If the product found is greater than the
|
||||
* current maximum, save the current product.*/
|
||||
for(i = 999; i >= 100; i--)
|
||||
{
|
||||
for(j = i; j >= 100; j--)
|
||||
{
|
||||
num = i * j;
|
||||
/* Use the function defined in projecteuler.c to check if a number is palindrome.*/
|
||||
if(num > max && is_palindrome(num, 10))
|
||||
{
|
||||
max = num;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Using a brute-force approach: generate every product of 3-digit numbers
|
||||
* and check if it's palindrome. If the product found is greater than the
|
||||
* current maximum, save the current product.*/
|
||||
for(i = 999; i >= 100; i--)
|
||||
{
|
||||
for(j = i; j >= 100; j--)
|
||||
{
|
||||
num = i * j;
|
||||
/* Use the function defined in projecteuler.c to check if a number is palindrome.*/
|
||||
if(num > max && is_palindrome(num, 10))
|
||||
{
|
||||
max = num;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 4\n");
|
||||
printf("Answer: %d\n", max);
|
||||
printf("Project Euler, Problem 4\n");
|
||||
printf("Answer: %d\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
26
C/p005.c
26
C/p005.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -9,23 +11,23 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
long int res, n[20] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
long int res, n[20] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Function define in projecteuler.c to find the least common multiple of multiple numbers.*/
|
||||
res = lcmm(n, 20);
|
||||
/* Function define in projecteuler.c to find the least common multiple of multiple numbers.*/
|
||||
res = lcmm(n, 20);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 5\n");
|
||||
printf("Answer: %ld\n", res);
|
||||
printf("Project Euler, Problem 5\n");
|
||||
printf("Answer: %ld\n", res);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
40
C/p006.c
40
C/p006.c
@ -1,44 +1,46 @@
|
||||
/* The sum of the squares of the first ten natural numbers is,
|
||||
*
|
||||
* 1^2 + 2^2 + ... + 10^2 = 385
|
||||
*
|
||||
*
|
||||
* The square of the sum of the first ten natural numbers is,
|
||||
*
|
||||
* (1 + 2 + ... + 10)^2 = 55^2 = 3025
|
||||
*
|
||||
*
|
||||
* Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
*
|
||||
* Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, sum_squares = 0, square_sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, sum_squares = 0, square_sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Straightforward brute-force approach.*/
|
||||
for(i = 1; i <= 100; i++)
|
||||
{
|
||||
sum_squares += i*i;
|
||||
square_sum += i;
|
||||
}
|
||||
/* Straightforward brute-force approach.*/
|
||||
for(i = 1; i <= 100; i++)
|
||||
{
|
||||
sum_squares += i*i;
|
||||
square_sum += i;
|
||||
}
|
||||
|
||||
square_sum *= square_sum;
|
||||
square_sum *= square_sum;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 6\n");
|
||||
printf("Answer: %d\n", square_sum-sum_squares);
|
||||
printf("Project Euler, Problem 6\n");
|
||||
printf("Answer: %d\n", square_sum-sum_squares);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
46
C/p007.c
46
C/p007.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* What is the 10 001st prime number?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -9,33 +11,33 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int count = 1, n = 1, target = 10001;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int count = 1, n = 1, target = 10001;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Brute force approach: start with count=1 and check every odd number
|
||||
* (2 is the only even prime), if it's prime increment count, until the
|
||||
* target prime is reached.*/
|
||||
while(count != target)
|
||||
{
|
||||
n += 2;
|
||||
/* Use the function in projecteuler.c to check if a number is prime.*/
|
||||
if(is_prime(n))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
/* Brute force approach: start with count=1 and check every odd number
|
||||
* (2 is the only even prime), if it's prime increment count, until the
|
||||
* target prime is reached.*/
|
||||
while(count != target)
|
||||
{
|
||||
n += 2;
|
||||
/* Use the function in projecteuler.c to check if a number is prime.*/
|
||||
if(is_prime(n))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 7\n");
|
||||
printf("Answer: %d\n", n);
|
||||
printf("Project Euler, Problem 7\n");
|
||||
printf("Answer: %d\n", n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
144
C/p008.c
144
C/p008.c
@ -23,90 +23,92 @@
|
||||
*
|
||||
* Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char string[] = "73167176531330624919225119674426574742355349"
|
||||
"19493496983520312774506326239578318016984801"
|
||||
"86947885184385861560789112949495459501737958"
|
||||
"33195285320880551112540698747158523863050715"
|
||||
"69329096329522744304355766896648950445244523"
|
||||
"16173185640309871112172238311362229893423380"
|
||||
"30813533627661428280644448664523874930358907"
|
||||
"29629049156044077239071381051585930796086670"
|
||||
"17242712188399879790879227492190169972088809"
|
||||
"37766572733300105336788122023542180975125454"
|
||||
"05947522435258490771167055601360483958644670"
|
||||
"63244157221553975369781797784617406495514929"
|
||||
"08625693219784686224828397224137565705605749"
|
||||
"02614079729686524145351004748216637048440319"
|
||||
"98900088952434506585412275886668811642717147"
|
||||
"99244429282308634656748139191231628245861786"
|
||||
"64583591245665294765456828489128831426076900"
|
||||
"42242190226710556263211111093705442175069416"
|
||||
"58960408071984038509624554443629812309878799"
|
||||
"27244284909188845801561660979191338754992005"
|
||||
"24063689912560717606058861164671094050775410"
|
||||
"02256983155200055935729725716362695618826704"
|
||||
"28252483600823257530420752963450";
|
||||
char cur, out;
|
||||
long int max = 0, tmp = 1;
|
||||
int i, j;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
char string[] = "73167176531330624919225119674426574742355349"
|
||||
"19493496983520312774506326239578318016984801"
|
||||
"86947885184385861560789112949495459501737958"
|
||||
"33195285320880551112540698747158523863050715"
|
||||
"69329096329522744304355766896648950445244523"
|
||||
"16173185640309871112172238311362229893423380"
|
||||
"30813533627661428280644448664523874930358907"
|
||||
"29629049156044077239071381051585930796086670"
|
||||
"17242712188399879790879227492190169972088809"
|
||||
"37766572733300105336788122023542180975125454"
|
||||
"05947522435258490771167055601360483958644670"
|
||||
"63244157221553975369781797784617406495514929"
|
||||
"08625693219784686224828397224137565705605749"
|
||||
"02614079729686524145351004748216637048440319"
|
||||
"98900088952434506585412275886668811642717147"
|
||||
"99244429282308634656748139191231628245861786"
|
||||
"64583591245665294765456828489128831426076900"
|
||||
"42242190226710556263211111093705442175069416"
|
||||
"58960408071984038509624554443629812309878799"
|
||||
"27244284909188845801561660979191338754992005"
|
||||
"24063689912560717606058861164671094050775410"
|
||||
"02256983155200055935729725716362695618826704"
|
||||
"28252483600823257530420752963450";
|
||||
char cur, out;
|
||||
long int max = 0, tmp = 1;
|
||||
int i, j;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 0; i < 1000; i++)
|
||||
{
|
||||
/* For the first 13 digits, just multiply them.*/
|
||||
if(i < 13)
|
||||
{
|
||||
cur = string[i] - '0';
|
||||
tmp *= (long int)cur;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the current product is greater than the maximum, save the current as maximum.*/
|
||||
if(tmp > max)
|
||||
{
|
||||
max = tmp;
|
||||
}
|
||||
/* Check the value of the first digit of the previous sequence, which will not be part
|
||||
* of the next sequence.*/
|
||||
out = string[i-13] - '0';
|
||||
/* If the digit is zero, multiply all the 13 digits of the new sequence.*/
|
||||
if(out == 0)
|
||||
{
|
||||
tmp = 1;
|
||||
for(j = i - 12; j <= i; j++)
|
||||
{
|
||||
cur = string[j] - '0';
|
||||
tmp *= (long int)cur;
|
||||
}
|
||||
}
|
||||
/* If the digit not zero, instead of multiplying all the 13 digits of the new sequence,
|
||||
* divide the current product by the remove digit and multiply it by the new digit.*/
|
||||
else
|
||||
{
|
||||
for(i = 0; i < 1000; i++)
|
||||
{
|
||||
/* For the first 13 digits, just multiply them.*/
|
||||
if(i < 13)
|
||||
{
|
||||
cur = string[i] - '0';
|
||||
tmp /= (long int)out;
|
||||
tmp *= (long int)cur;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the current product is greater than the maximum, save the current as maximum.*/
|
||||
if(tmp > max)
|
||||
{
|
||||
max = tmp;
|
||||
}
|
||||
/* Check the value of the first digit of the previous sequence, which will not be part
|
||||
* of the next sequence.*/
|
||||
out = string[i-13] - '0';
|
||||
/* If the digit is zero, multiply all the 13 digits of the new sequence.*/
|
||||
if(out == 0)
|
||||
{
|
||||
tmp = 1;
|
||||
for(j = i - 12; j <= i; j++)
|
||||
{
|
||||
cur = string[j] - '0';
|
||||
tmp *= (long int)cur;
|
||||
}
|
||||
}
|
||||
/* If the digit not zero, instead of multiplying all the 13 digits of the new sequence,
|
||||
* divide the current product by the remove digit and multiply it by the new digit.*/
|
||||
else
|
||||
{
|
||||
cur = string[i] - '0';
|
||||
tmp /= (long int)out;
|
||||
tmp *= (long int)cur;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 8\n");
|
||||
printf("Answer: %ld\n", max);
|
||||
printf("Project Euler, Problem 8\n");
|
||||
printf("Answer: %ld\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
98
C/p009.c
98
C/p009.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* Find the product abc.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -15,61 +17,61 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int a, b, c, tmpa, tmpb, tmpc, i, m, n, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int a, b, c, tmpa, tmpb, tmpc, i, m, n, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Brute force approach: generate all the Pythagorean triplets using
|
||||
* Euclid's formula, until the one where a+b+c=1000 is found.*/
|
||||
for(m = 2; found == 0; m++)
|
||||
{
|
||||
for(n = 1; n < m && !found; n++)
|
||||
{
|
||||
if(gcd(m, n) == 1 && ((m % 2 == 0 && n % 2 != 0) || (m % 2 != 0 && n % 2 == 0)))
|
||||
{
|
||||
a = m * m - n * n;
|
||||
b = 2 * m * n;
|
||||
c = m * m + n * n;
|
||||
|
||||
if(a + b + c == 1000)
|
||||
/* Brute force approach: generate all the Pythagorean triplets using
|
||||
* Euclid's formula, until the one where a+b+c=1000 is found.*/
|
||||
for(m = 2; found == 0; m++)
|
||||
{
|
||||
for(n = 1; n < m && !found; n++)
|
||||
{
|
||||
if(gcd(m, n) == 1 && ((m % 2 == 0 && n % 2 != 0) || (m % 2 != 0 && n % 2 == 0)))
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
a = m * m - n * n;
|
||||
b = 2 * m * n;
|
||||
c = m * m + n * n;
|
||||
|
||||
if(a + b + c == 1000)
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
i = 2;
|
||||
|
||||
do
|
||||
{
|
||||
tmpa = a * i;
|
||||
tmpb = b * i;
|
||||
tmpc = c * i;
|
||||
|
||||
if(tmpa + tmpb + tmpc == 1000)
|
||||
{
|
||||
a = tmpa;
|
||||
b = tmpb;
|
||||
c = tmpc;
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
i++;
|
||||
} while(tmpa + tmpb + tmpc < 1000);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
i = 2;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
do
|
||||
{
|
||||
tmpa = a * i;
|
||||
tmpb = b * i;
|
||||
tmpc = c * i;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
if(tmpa + tmpb + tmpc == 1000)
|
||||
{
|
||||
a = tmpa;
|
||||
b = tmpb;
|
||||
c = tmpc;
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
i++;
|
||||
}while(tmpa + tmpb + tmpc < 1000);
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("Project Euler, Problem 9\n");
|
||||
printf("Answer: %d\n", a*b*c);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 9\n");
|
||||
printf("Answer: %d\n", a*b*c);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
58
C/p010.c
58
C/p010.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* Find the sum of all the primes below two million.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -11,41 +13,41 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
int *primes;
|
||||
long int sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i;
|
||||
int *primes;
|
||||
long int sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Use the function in projecteuler.c implementing the
|
||||
* Sieve of Eratosthenes algorithm to generate primes.*/
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
/* Use the function in projecteuler.c implementing the
|
||||
* Sieve of Eratosthenes algorithm to generate primes.*/
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Sum all the primes.*/
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
/* Sum all the primes.*/
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
|
||||
free(primes);
|
||||
free(primes);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 10\n");
|
||||
printf("Answer: %ld\n", sum);
|
||||
printf("Project Euler, Problem 10\n");
|
||||
printf("Answer: %ld\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
179
C/p011.c
179
C/p011.c
@ -25,110 +25,113 @@
|
||||
*
|
||||
* What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int grid[][20] = {{8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8},
|
||||
{49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0},
|
||||
{81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65},
|
||||
{52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91},
|
||||
{22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80},
|
||||
{24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50},
|
||||
{32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70},
|
||||
{67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21},
|
||||
{24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72},
|
||||
{21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95},
|
||||
{78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92},
|
||||
{16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57},
|
||||
{86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58},
|
||||
{19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40},
|
||||
{4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66},
|
||||
{88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69},
|
||||
{4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36},
|
||||
{20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16},
|
||||
{20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54},
|
||||
{1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48}};
|
||||
int i, j, k, w, max = 0, prod;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int grid[][20] = {{8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8},
|
||||
{49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0},
|
||||
{81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65},
|
||||
{52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91},
|
||||
{22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80},
|
||||
{24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50},
|
||||
{32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70},
|
||||
{67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21},
|
||||
{24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72},
|
||||
{21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95},
|
||||
{78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92},
|
||||
{16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57},
|
||||
{86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58},
|
||||
{19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40},
|
||||
{4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66},
|
||||
{88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69},
|
||||
{4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36},
|
||||
{20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16},
|
||||
{20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54},
|
||||
{1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48}
|
||||
};
|
||||
int i, j, k, w, max = 0, prod;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Brute-force approach: for each number in the grid, try products with its three
|
||||
* adjacent numbers in every direction (horizontal, vertical and the two diagonals).
|
||||
* If the product is larger than the current maximum, save it.*/
|
||||
for(i = 0; i < 17; i++)
|
||||
{
|
||||
for(j = 0; j < 17; j++)
|
||||
{
|
||||
prod = 1;
|
||||
/* Horizontal direction.*/
|
||||
for(k = j; k < j + 4; k++)
|
||||
{
|
||||
prod *= grid[i][k];
|
||||
}
|
||||
/* Brute-force approach: for each number in the grid, try products with its three
|
||||
* adjacent numbers in every direction (horizontal, vertical and the two diagonals).
|
||||
* If the product is larger than the current maximum, save it.*/
|
||||
for(i = 0; i < 17; i++)
|
||||
{
|
||||
for(j = 0; j < 17; j++)
|
||||
{
|
||||
prod = 1;
|
||||
/* Horizontal direction.*/
|
||||
for(k = j; k < j + 4; k++)
|
||||
{
|
||||
prod *= grid[i][k];
|
||||
}
|
||||
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
}
|
||||
|
||||
prod = 1;
|
||||
/* Vertical direction.*/
|
||||
for(k = i; k < i + 4; k++)
|
||||
{
|
||||
prod *= grid[k][j];
|
||||
}
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
}
|
||||
|
||||
prod = 1;
|
||||
/* Diagonal direction, from top left to bottom right.*/
|
||||
for(k = i, w = j; k < i + 4 && w < j + 4; k++, w++)
|
||||
{
|
||||
prod *= grid[k][w];
|
||||
}
|
||||
if(k == i + 4 && w == j + 4)
|
||||
{
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
max = prod;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* The last diagonal is handled separately.*/
|
||||
for(i = 0; i < 17; i++)
|
||||
{
|
||||
for(j = 3; j < 20; j++)
|
||||
{
|
||||
prod = 1;
|
||||
/* Diagonal direction, from top right to bottom left.*/
|
||||
for(k = i, w = j; k < i + 4 && w > j - 4; k++, w--)
|
||||
{
|
||||
prod *= grid[k][w];
|
||||
}
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
}
|
||||
}
|
||||
}
|
||||
prod = 1;
|
||||
/* Vertical direction.*/
|
||||
for(k = i; k < i + 4; k++)
|
||||
{
|
||||
prod *= grid[k][j];
|
||||
}
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
prod = 1;
|
||||
/* Diagonal direction, from top left to bottom right.*/
|
||||
for(k = i, w = j; k < i + 4 && w < j + 4; k++, w++)
|
||||
{
|
||||
prod *= grid[k][w];
|
||||
}
|
||||
if(k == i + 4 && w == j + 4)
|
||||
{
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
/* The last diagonal is handled separately.*/
|
||||
for(i = 0; i < 17; i++)
|
||||
{
|
||||
for(j = 3; j < 20; j++)
|
||||
{
|
||||
prod = 1;
|
||||
/* Diagonal direction, from top right to bottom left.*/
|
||||
for(k = i, w = j; k < i + 4 && w > j - 4; k++, w--)
|
||||
{
|
||||
prod *= grid[k][w];
|
||||
}
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
printf("Project Euler, Problem 11\n");
|
||||
printf("Answer: %d\n", max);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
return 0;
|
||||
printf("Project Euler, Problem 11\n");
|
||||
printf("Answer: %d\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
48
C/p012.c
48
C/p012.c
@ -17,6 +17,8 @@
|
||||
*
|
||||
* What is the value of the first triangle number to have over five hundred divisors?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -24,34 +26,34 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i = 0, finished = 0, count, triang = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i = 0, finished = 0, count, triang = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Generate all triangle numbers until the first one with more than 500 divisors is found.*/
|
||||
while(!finished)
|
||||
{
|
||||
i++;
|
||||
triang += i;
|
||||
/* Use the function implemented in projecteuler.c to count divisors of a number.*/
|
||||
count = count_divisors(triang);
|
||||
|
||||
if(count > 500)
|
||||
{
|
||||
finished = 1;
|
||||
}
|
||||
}
|
||||
/* Generate all triangle numbers until the first one with more than 500 divisors is found.*/
|
||||
while(!finished)
|
||||
{
|
||||
i++;
|
||||
triang += i;
|
||||
/* Use the function implemented in projecteuler.c to count divisors of a number.*/
|
||||
count = count_divisors(triang);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(count > 500)
|
||||
{
|
||||
finished = 1;
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 12\n");
|
||||
printf("Answer: %d\n", triang);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 12\n");
|
||||
printf("Answer: %d\n", triang);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
159
C/p013.c
159
C/p013.c
@ -101,6 +101,8 @@
|
||||
* 20849603980134001723930671666823555245252804609722
|
||||
* 53503534226472524250874054075591789781264330331690*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -108,94 +110,95 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char n[100][51] = {"37107287533902102798797998220837590246510135740250", "46376937677490009712648124896970078050417018260538",
|
||||
"74324986199524741059474233309513058123726617309629", "91942213363574161572522430563301811072406154908250",
|
||||
"23067588207539346171171980310421047513778063246676", "89261670696623633820136378418383684178734361726757",
|
||||
"28112879812849979408065481931592621691275889832738", "44274228917432520321923589422876796487670272189318",
|
||||
"47451445736001306439091167216856844588711603153276", "70386486105843025439939619828917593665686757934951",
|
||||
"62176457141856560629502157223196586755079324193331", "64906352462741904929101432445813822663347944758178",
|
||||
"92575867718337217661963751590579239728245598838407", "58203565325359399008402633568948830189458628227828",
|
||||
"80181199384826282014278194139940567587151170094390", "35398664372827112653829987240784473053190104293586",
|
||||
"86515506006295864861532075273371959191420517255829", "71693888707715466499115593487603532921714970056938",
|
||||
"54370070576826684624621495650076471787294438377604", "53282654108756828443191190634694037855217779295145",
|
||||
"36123272525000296071075082563815656710885258350721", "45876576172410976447339110607218265236877223636045",
|
||||
"17423706905851860660448207621209813287860733969412", "81142660418086830619328460811191061556940512689692",
|
||||
"51934325451728388641918047049293215058642563049483", "62467221648435076201727918039944693004732956340691",
|
||||
"15732444386908125794514089057706229429197107928209", "55037687525678773091862540744969844508330393682126",
|
||||
"18336384825330154686196124348767681297534375946515", "80386287592878490201521685554828717201219257766954",
|
||||
"78182833757993103614740356856449095527097864797581", "16726320100436897842553539920931837441497806860984",
|
||||
"48403098129077791799088218795327364475675590848030", "87086987551392711854517078544161852424320693150332",
|
||||
"59959406895756536782107074926966537676326235447210", "69793950679652694742597709739166693763042633987085",
|
||||
"41052684708299085211399427365734116182760315001271", "65378607361501080857009149939512557028198746004375",
|
||||
"35829035317434717326932123578154982629742552737307", "94953759765105305946966067683156574377167401875275",
|
||||
"88902802571733229619176668713819931811048770190271", "25267680276078003013678680992525463401061632866526",
|
||||
"36270218540497705585629946580636237993140746255962", "24074486908231174977792365466257246923322810917141",
|
||||
"91430288197103288597806669760892938638285025333403", "34413065578016127815921815005561868836468420090470",
|
||||
"23053081172816430487623791969842487255036638784583", "11487696932154902810424020138335124462181441773470",
|
||||
"63783299490636259666498587618221225225512486764533", "67720186971698544312419572409913959008952310058822",
|
||||
"95548255300263520781532296796249481641953868218774", "76085327132285723110424803456124867697064507995236",
|
||||
"37774242535411291684276865538926205024910326572967", "23701913275725675285653248258265463092207058596522",
|
||||
"29798860272258331913126375147341994889534765745501", "18495701454879288984856827726077713721403798879715",
|
||||
"38298203783031473527721580348144513491373226651381", "34829543829199918180278916522431027392251122869539",
|
||||
"40957953066405232632538044100059654939159879593635", "29746152185502371307642255121183693803580388584903",
|
||||
"41698116222072977186158236678424689157993532961922", "62467957194401269043877107275048102390895523597457",
|
||||
"23189706772547915061505504953922979530901129967519", "86188088225875314529584099251203829009407770775672",
|
||||
"11306739708304724483816533873502340845647058077308", "82959174767140363198008187129011875491310547126581",
|
||||
"97623331044818386269515456334926366572897563400500", "42846280183517070527831839425882145521227251250327",
|
||||
"55121603546981200581762165212827652751691296897789", "32238195734329339946437501907836945765883352399886",
|
||||
"75506164965184775180738168837861091527357929701337", "62177842752192623401942399639168044983993173312731",
|
||||
"32924185707147349566916674687634660915035914677504", "99518671430235219628894890102423325116913619626622",
|
||||
"73267460800591547471830798392868535206946944540724", "76841822524674417161514036427982273348055556214818",
|
||||
"97142617910342598647204516893989422179826088076852", "87783646182799346313767754307809363333018982642090",
|
||||
"10848802521674670883215120185883543223812876952786", "71329612474782464538636993009049310363619763878039",
|
||||
"62184073572399794223406235393808339651327408011116", "66627891981488087797941876876144230030984490851411",
|
||||
"60661826293682836764744779239180335110989069790714", "85786944089552990653640447425576083659976645795096",
|
||||
"66024396409905389607120198219976047599490197230297", "64913982680032973156037120041377903785566085089252",
|
||||
"16730939319872750275468906903707539413042652315011", "94809377245048795150954100921645863754710598436791",
|
||||
"78639167021187492431995700641917969777599028300699", "15368713711936614952811305876380278410754449733078",
|
||||
"40789923115535562561142322423255033685442488917353", "44889911501440648020369068063960672322193204149535",
|
||||
"41503128880339536053299340368006977710650566631954", "81234880673210146739058568557934581403627822703280",
|
||||
"82616570773948327592232845941706525094512325230608", "22918802058777319719839450180888072429661980811197",
|
||||
"77158542502016545090413245809786882778948721859617", "72107838435069186155435662884062257473692284509516",
|
||||
"20849603980134001723930671666823555245252804609722", "53503534226472524250874054075591789781264330331690"};
|
||||
char result[100];
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t a, b;
|
||||
char n[100][51] = {"37107287533902102798797998220837590246510135740250", "46376937677490009712648124896970078050417018260538",
|
||||
"74324986199524741059474233309513058123726617309629", "91942213363574161572522430563301811072406154908250",
|
||||
"23067588207539346171171980310421047513778063246676", "89261670696623633820136378418383684178734361726757",
|
||||
"28112879812849979408065481931592621691275889832738", "44274228917432520321923589422876796487670272189318",
|
||||
"47451445736001306439091167216856844588711603153276", "70386486105843025439939619828917593665686757934951",
|
||||
"62176457141856560629502157223196586755079324193331", "64906352462741904929101432445813822663347944758178",
|
||||
"92575867718337217661963751590579239728245598838407", "58203565325359399008402633568948830189458628227828",
|
||||
"80181199384826282014278194139940567587151170094390", "35398664372827112653829987240784473053190104293586",
|
||||
"86515506006295864861532075273371959191420517255829", "71693888707715466499115593487603532921714970056938",
|
||||
"54370070576826684624621495650076471787294438377604", "53282654108756828443191190634694037855217779295145",
|
||||
"36123272525000296071075082563815656710885258350721", "45876576172410976447339110607218265236877223636045",
|
||||
"17423706905851860660448207621209813287860733969412", "81142660418086830619328460811191061556940512689692",
|
||||
"51934325451728388641918047049293215058642563049483", "62467221648435076201727918039944693004732956340691",
|
||||
"15732444386908125794514089057706229429197107928209", "55037687525678773091862540744969844508330393682126",
|
||||
"18336384825330154686196124348767681297534375946515", "80386287592878490201521685554828717201219257766954",
|
||||
"78182833757993103614740356856449095527097864797581", "16726320100436897842553539920931837441497806860984",
|
||||
"48403098129077791799088218795327364475675590848030", "87086987551392711854517078544161852424320693150332",
|
||||
"59959406895756536782107074926966537676326235447210", "69793950679652694742597709739166693763042633987085",
|
||||
"41052684708299085211399427365734116182760315001271", "65378607361501080857009149939512557028198746004375",
|
||||
"35829035317434717326932123578154982629742552737307", "94953759765105305946966067683156574377167401875275",
|
||||
"88902802571733229619176668713819931811048770190271", "25267680276078003013678680992525463401061632866526",
|
||||
"36270218540497705585629946580636237993140746255962", "24074486908231174977792365466257246923322810917141",
|
||||
"91430288197103288597806669760892938638285025333403", "34413065578016127815921815005561868836468420090470",
|
||||
"23053081172816430487623791969842487255036638784583", "11487696932154902810424020138335124462181441773470",
|
||||
"63783299490636259666498587618221225225512486764533", "67720186971698544312419572409913959008952310058822",
|
||||
"95548255300263520781532296796249481641953868218774", "76085327132285723110424803456124867697064507995236",
|
||||
"37774242535411291684276865538926205024910326572967", "23701913275725675285653248258265463092207058596522",
|
||||
"29798860272258331913126375147341994889534765745501", "18495701454879288984856827726077713721403798879715",
|
||||
"38298203783031473527721580348144513491373226651381", "34829543829199918180278916522431027392251122869539",
|
||||
"40957953066405232632538044100059654939159879593635", "29746152185502371307642255121183693803580388584903",
|
||||
"41698116222072977186158236678424689157993532961922", "62467957194401269043877107275048102390895523597457",
|
||||
"23189706772547915061505504953922979530901129967519", "86188088225875314529584099251203829009407770775672",
|
||||
"11306739708304724483816533873502340845647058077308", "82959174767140363198008187129011875491310547126581",
|
||||
"97623331044818386269515456334926366572897563400500", "42846280183517070527831839425882145521227251250327",
|
||||
"55121603546981200581762165212827652751691296897789", "32238195734329339946437501907836945765883352399886",
|
||||
"75506164965184775180738168837861091527357929701337", "62177842752192623401942399639168044983993173312731",
|
||||
"32924185707147349566916674687634660915035914677504", "99518671430235219628894890102423325116913619626622",
|
||||
"73267460800591547471830798392868535206946944540724", "76841822524674417161514036427982273348055556214818",
|
||||
"97142617910342598647204516893989422179826088076852", "87783646182799346313767754307809363333018982642090",
|
||||
"10848802521674670883215120185883543223812876952786", "71329612474782464538636993009049310363619763878039",
|
||||
"62184073572399794223406235393808339651327408011116", "66627891981488087797941876876144230030984490851411",
|
||||
"60661826293682836764744779239180335110989069790714", "85786944089552990653640447425576083659976645795096",
|
||||
"66024396409905389607120198219976047599490197230297", "64913982680032973156037120041377903785566085089252",
|
||||
"16730939319872750275468906903707539413042652315011", "94809377245048795150954100921645863754710598436791",
|
||||
"78639167021187492431995700641917969777599028300699", "15368713711936614952811305876380278410754449733078",
|
||||
"40789923115535562561142322423255033685442488917353", "44889911501440648020369068063960672322193204149535",
|
||||
"41503128880339536053299340368006977710650566631954", "81234880673210146739058568557934581403627822703280",
|
||||
"82616570773948327592232845941706525094512325230608", "22918802058777319719839450180888072429661980811197",
|
||||
"77158542502016545090413245809786882778948721859617", "72107838435069186155435662884062257473692284509516",
|
||||
"20849603980134001723930671666823555245252804609722", "53503534226472524250874054075591789781264330331690"
|
||||
};
|
||||
char result[100];
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t a, b;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Using the GNU Multiple Precision Arithmetic Library (GMP)
|
||||
* to sum the numbers and get the first 10 digits of the sum.*/
|
||||
mpz_inits(a, b, NULL);
|
||||
mpz_set_str(a, n[0], 10);
|
||||
/* Using the GNU Multiple Precision Arithmetic Library (GMP)
|
||||
* to sum the numbers and get the first 10 digits of the sum.*/
|
||||
mpz_inits(a, b, NULL);
|
||||
mpz_set_str(a, n[0], 10);
|
||||
|
||||
for(i = 1; i < 100; i++)
|
||||
{
|
||||
mpz_set_str(b, n[i], 10);
|
||||
mpz_add(a, a, b);
|
||||
}
|
||||
for(i = 1; i < 100; i++)
|
||||
{
|
||||
mpz_set_str(b, n[i], 10);
|
||||
mpz_add(a, a, b);
|
||||
}
|
||||
|
||||
gmp_sprintf(result, "%Zd\n", a);
|
||||
gmp_sprintf(result, "%Zd\n", a);
|
||||
|
||||
mpz_clears(a, b, NULL);
|
||||
mpz_clears(a, b, NULL);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec-start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec-start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 13\n");
|
||||
printf("Answer: ");
|
||||
printf("Project Euler, Problem 13\n");
|
||||
printf("Answer: ");
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
printf("%c", result[i]);
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
printf("%c", result[i]);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
printf("\n");
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
68
C/p014.c
68
C/p014.c
@ -14,6 +14,8 @@
|
||||
*
|
||||
* NOTE: Once the chain starts the terms are allowed to go above one million.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -26,36 +28,36 @@ int collatz_found[N] = {0};
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count, max = 0, max_l = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, count, max = 0, max_l = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 1; i < N; i++)
|
||||
{
|
||||
/* For each number from 1 to 1000000, find the length of the sequence
|
||||
* and save its value, so that it can be used for the next numbers.*/
|
||||
count = collatz_length(i);
|
||||
collatz_found[i] = count;
|
||||
|
||||
if(count > max_l)
|
||||
{
|
||||
max_l = count;
|
||||
max = i;
|
||||
}
|
||||
}
|
||||
for(i = 1; i < N; i++)
|
||||
{
|
||||
/* For each number from 1 to 1000000, find the length of the sequence
|
||||
* and save its value, so that it can be used for the next numbers.*/
|
||||
count = collatz_length(i);
|
||||
collatz_found[i] = count;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(count > max_l)
|
||||
{
|
||||
max_l = count;
|
||||
max = i;
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 14\n");
|
||||
printf("Answer: %d\n", max);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 14\n");
|
||||
printf("Answer: %d\n", max);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Recursive function to calculate the Collatz sequence for n.
|
||||
@ -63,16 +65,16 @@ int main(int argc, char **argv)
|
||||
* Collatz(n)=1+Collatz(3*n+1).*/
|
||||
int collatz_length(long int n)
|
||||
{
|
||||
if(n == 1)
|
||||
return 1;
|
||||
if(n == 1)
|
||||
return 1;
|
||||
|
||||
/* If Collatz(n) has been previously calculated,
|
||||
* just return the value.*/
|
||||
if(n < N && collatz_found[n])
|
||||
return collatz_found[n];
|
||||
/* If Collatz(n) has been previously calculated,
|
||||
* just return the value.*/
|
||||
if(n < N && collatz_found[n])
|
||||
return collatz_found[n];
|
||||
|
||||
if(n % 2 == 0)
|
||||
return 1 + collatz_length(n/2);
|
||||
else
|
||||
return 1 + collatz_length(3*n+1);
|
||||
if(n % 2 == 0)
|
||||
return 1 + collatz_length(n/2);
|
||||
else
|
||||
return 1 + collatz_length(3*n+1);
|
||||
}
|
||||
|
44
C/p015.c
44
C/p015.c
@ -1,6 +1,8 @@
|
||||
/* Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner
|
||||
* How many such routes are there through a 20×20 grid?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -8,33 +10,33 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t count, tmp;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t count, tmp;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Using a combinatorial solution: in a 20x20 grid there will always be
|
||||
* 20 movements to the right and 20 movements down, that can be represented
|
||||
* as a string of Rs and Ds. The number of routes is the number of combinations.
|
||||
* This is obtained calculating n!/(k!*(n-k)!), where n=40 and k=20. The GMP
|
||||
* Library is used to calculate the factorials.*/
|
||||
mpz_inits(count, tmp, NULL);
|
||||
mpz_fac_ui(count, 40);
|
||||
mpz_fac_ui(tmp, 20);
|
||||
mpz_mul(tmp, tmp, tmp);
|
||||
mpz_tdiv_q(count, count, tmp);
|
||||
/* Using a combinatorial solution: in a 20x20 grid there will always be
|
||||
* 20 movements to the right and 20 movements down, that can be represented
|
||||
* as a string of Rs and Ds. The number of routes is the number of combinations.
|
||||
* This is obtained calculating n!/(k!*(n-k)!), where n=40 and k=20. The GMP
|
||||
* Library is used to calculate the factorials.*/
|
||||
mpz_inits(count, tmp, NULL);
|
||||
mpz_fac_ui(count, 40);
|
||||
mpz_fac_ui(tmp, 20);
|
||||
mpz_mul(tmp, tmp, tmp);
|
||||
mpz_tdiv_q(count, count, tmp);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 15\n");
|
||||
gmp_printf("Answer: %Zd\n", count);
|
||||
printf("Project Euler, Problem 15\n");
|
||||
gmp_printf("Answer: %Zd\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
mpz_clears(count, tmp, NULL);
|
||||
mpz_clears(count, tmp, NULL);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
48
C/p016.c
48
C/p016.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* What is the sum of the digits of the number 2^1000?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -9,37 +11,37 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t p, sum, r;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t p, sum, r;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Simply calculate 2^1000 with the GMP Library
|
||||
* and sum all the digits.*/
|
||||
mpz_init_set_ui(p, 2);
|
||||
mpz_init_set_ui(sum, 0);
|
||||
mpz_init(r);
|
||||
/* Simply calculate 2^1000 with the GMP Library
|
||||
* and sum all the digits.*/
|
||||
mpz_init_set_ui(p, 2);
|
||||
mpz_init_set_ui(sum, 0);
|
||||
mpz_init(r);
|
||||
|
||||
mpz_pow_ui(p, p, 1000);
|
||||
mpz_pow_ui(p, p, 1000);
|
||||
|
||||
while(mpz_cmp_ui(p, 0))
|
||||
{
|
||||
/* To get each digit, simply get the reminder of the division by 10.*/
|
||||
mpz_tdiv_qr_ui(p, r, p, 10);
|
||||
mpz_add(sum, sum, r);
|
||||
}
|
||||
while(mpz_cmp_ui(p, 0))
|
||||
{
|
||||
/* To get each digit, simply get the reminder of the division by 10.*/
|
||||
mpz_tdiv_qr_ui(p, r, p, 10);
|
||||
mpz_add(sum, sum, r);
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 16\n");
|
||||
gmp_printf("Answer: %Zd\n", sum);
|
||||
printf("Project Euler, Problem 16\n");
|
||||
gmp_printf("Answer: %Zd\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
mpz_clears(p, sum, r, NULL);
|
||||
mpz_clears(p, sum, r, NULL);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
118
C/p017.c
118
C/p017.c
@ -5,78 +5,80 @@
|
||||
* NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen)
|
||||
* contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
/* Number of letters for numbers from 1 to 19.*/
|
||||
int n1_19[19] = {3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8};
|
||||
/* Number of letters for "twenty", "thirty", ..., "ninety".*/
|
||||
int n20_90[8] = {6, 6, 5, 5, 5, 7, 6, 6};
|
||||
/* Number of letters for "one hundred and", "two hundred and", ...,
|
||||
* "nine hundred and".*/
|
||||
int n100_900[9] = {13, 13, 15, 14, 14, 13, 15, 15, 14};
|
||||
/* Number of letters for 1000.*/
|
||||
int n1000 = 11;
|
||||
int sum = 0, i, j;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
/* Number of letters for numbers from 1 to 19.*/
|
||||
int n1_19[19] = {3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8};
|
||||
/* Number of letters for "twenty", "thirty", ..., "ninety".*/
|
||||
int n20_90[8] = {6, 6, 5, 5, 5, 7, 6, 6};
|
||||
/* Number of letters for "one hundred and", "two hundred and", ...,
|
||||
* "nine hundred and".*/
|
||||
int n100_900[9] = {13, 13, 15, 14, 14, 13, 15, 15, 14};
|
||||
/* Number of letters for 1000.*/
|
||||
int n1000 = 11;
|
||||
int sum = 0, i, j;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Sum the letters of the first 19 numbers.*/
|
||||
for(i = 0; i < 19; i++)
|
||||
{
|
||||
sum += n1_19[i];
|
||||
}
|
||||
/* Sum the letters of the first 19 numbers.*/
|
||||
for(i = 0; i < 19; i++)
|
||||
{
|
||||
sum += n1_19[i];
|
||||
}
|
||||
|
||||
/* Add the letters of the numbers from 20 to 99.*/
|
||||
for(i = 0; i < 8; i++)
|
||||
{
|
||||
/* "Twenty", "thirty", ... "ninety" are used ten times each
|
||||
* (e.g. "twenty", "twenty one", "twenty two", ..., "twenty nine").*/
|
||||
n20_90[i] *= 10;
|
||||
/* Add "one", "two", ..., "nine".*/
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
n20_90[i] += n1_19[j];
|
||||
}
|
||||
sum += n20_90[i];
|
||||
}
|
||||
/* Add the letters of the numbers from 20 to 99.*/
|
||||
for(i = 0; i < 8; i++)
|
||||
{
|
||||
/* "Twenty", "thirty", ... "ninety" are used ten times each
|
||||
* (e.g. "twenty", "twenty one", "twenty two", ..., "twenty nine").*/
|
||||
n20_90[i] *= 10;
|
||||
/* Add "one", "two", ..., "nine".*/
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
n20_90[i] += n1_19[j];
|
||||
}
|
||||
sum += n20_90[i];
|
||||
}
|
||||
|
||||
/* Add the letters of the numbers from 100 to 999.*/
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
/* "One hundred and", "two hundred and",... are used 100 times each.*/
|
||||
n100_900[i] *= 100;
|
||||
/* Add "one" to "nineteen".*/
|
||||
for(j = 0; j < 19; j++)
|
||||
{
|
||||
n100_900[i] += n1_19[j];
|
||||
}
|
||||
/* Add "twenty" to "ninety nine", previously calculated.*/
|
||||
for(j = 0; j < 8; j++)
|
||||
{
|
||||
n100_900[i] += n20_90[j];
|
||||
}
|
||||
/* "One hundred", "two hundred", ... don't have the "and", so remove
|
||||
* three letters for each of them.*/
|
||||
sum += n100_900[i] - 3;
|
||||
}
|
||||
/* Add the letters of the numbers from 100 to 999.*/
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
/* "One hundred and", "two hundred and",... are used 100 times each.*/
|
||||
n100_900[i] *= 100;
|
||||
/* Add "one" to "nineteen".*/
|
||||
for(j = 0; j < 19; j++)
|
||||
{
|
||||
n100_900[i] += n1_19[j];
|
||||
}
|
||||
/* Add "twenty" to "ninety nine", previously calculated.*/
|
||||
for(j = 0; j < 8; j++)
|
||||
{
|
||||
n100_900[i] += n20_90[j];
|
||||
}
|
||||
/* "One hundred", "two hundred", ... don't have the "and", so remove
|
||||
* three letters for each of them.*/
|
||||
sum += n100_900[i] - 3;
|
||||
}
|
||||
|
||||
/* Add "one thousand".*/
|
||||
sum += n1000;
|
||||
/* Add "one thousand".*/
|
||||
sum += n1000;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 17\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 17\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
96
C/p018.c
96
C/p018.c
@ -1,5 +1,5 @@
|
||||
/* By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
|
||||
*
|
||||
*
|
||||
* 3
|
||||
* 7 4
|
||||
* 2 4 6
|
||||
@ -25,9 +25,11 @@
|
||||
* 63 66 04 68 89 53 67 30 73 16 69 87 40 31
|
||||
* 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
|
||||
*
|
||||
* NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge
|
||||
* NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge
|
||||
* with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -35,63 +37,63 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, max;
|
||||
int **triang;
|
||||
double elapsed;
|
||||
FILE *fp;
|
||||
struct timespec start, end;
|
||||
int i, j, max;
|
||||
int **triang;
|
||||
double elapsed;
|
||||
FILE *fp;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((triang = (int **)malloc(15*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((triang = (int **)malloc(15*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 1; i <= 15; i++)
|
||||
{
|
||||
if((triang[i-1] = (int *)malloc(i*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 1; i <= 15; i++)
|
||||
{
|
||||
if((triang[i-1] = (int *)malloc(i*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if((fp = fopen("triang.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "triang.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("triang.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "triang.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 1; i <= 15; i++)
|
||||
{
|
||||
for(j = 0; j < i; j++)
|
||||
{
|
||||
fscanf(fp, "%d", &triang[i-1][j]);
|
||||
}
|
||||
}
|
||||
for(i = 1; i <= 15; i++)
|
||||
{
|
||||
for(j = 0; j < i; j++)
|
||||
{
|
||||
fscanf(fp, "%d", &triang[i-1][j]);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
/* Use the function implemented in projecteuler.c to find the maximum path.*/
|
||||
max = find_max_path(triang, 15);
|
||||
/* Use the function implemented in projecteuler.c to find the maximum path.*/
|
||||
max = find_max_path(triang, 15);
|
||||
|
||||
for(i = 0; i < 15; i++)
|
||||
{
|
||||
free(triang[i]);
|
||||
}
|
||||
for(i = 0; i < 15; i++)
|
||||
{
|
||||
free(triang[i]);
|
||||
}
|
||||
|
||||
free(triang);
|
||||
free(triang);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 18\n");
|
||||
printf("Answer: %d\n", max);
|
||||
printf("Project Euler, Problem 18\n");
|
||||
printf("Answer: %d\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
126
C/p019.c
126
C/p019.c
@ -11,6 +11,8 @@
|
||||
*
|
||||
* How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -20,75 +22,75 @@ typedef enum {mon, tue, wed, thu, fri, sat, sun} days;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int year, i, limit, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
months month;
|
||||
days day;
|
||||
int year, i, limit, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
months month;
|
||||
days day;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
day = mon;
|
||||
month = jan;
|
||||
year = 1900;
|
||||
day = mon;
|
||||
month = jan;
|
||||
year = 1900;
|
||||
|
||||
while(year < 2001)
|
||||
{
|
||||
/* February has 29 days on leap years, otherwise 28. Leap years are those
|
||||
* divisible by 4, but not if they're divisible by 100, except when they're
|
||||
* divisible by 400.*/
|
||||
if(month == feb)
|
||||
{
|
||||
if(year % 400 == 0 || (year % 4 == 0 && year % 100 != 0))
|
||||
{
|
||||
limit = 29;
|
||||
}
|
||||
else
|
||||
{
|
||||
limit = 28;
|
||||
}
|
||||
}
|
||||
/* April, June, September and November have 30 days.*/
|
||||
else if(month == apr || month == jun || month == sep || month == nov)
|
||||
{
|
||||
limit = 30;
|
||||
}
|
||||
/* All other months have 31 days.*/
|
||||
else
|
||||
{
|
||||
limit = 31;
|
||||
}
|
||||
/* Loop on every day of the month.*/
|
||||
for(i = 1; i <= limit; i++)
|
||||
{
|
||||
/* If it's the first day of the month and it's Sunday, increase
|
||||
* counter, except if year=1900 (we need to count Sundays from
|
||||
* 1901 to 2000.*/
|
||||
if(year > 1900 && i == 1 && day == sun)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
/* Change day of the week.*/
|
||||
day = (day + 1) % 7;
|
||||
}
|
||||
/* At the end of the month, go to next month.*/
|
||||
month = (month + 1) % 12;
|
||||
while(year < 2001)
|
||||
{
|
||||
/* February has 29 days on leap years, otherwise 28. Leap years are those
|
||||
* divisible by 4, but not if they're divisible by 100, except when they're
|
||||
* divisible by 400.*/
|
||||
if(month == feb)
|
||||
{
|
||||
if(year % 400 == 0 || (year % 4 == 0 && year % 100 != 0))
|
||||
{
|
||||
limit = 29;
|
||||
}
|
||||
else
|
||||
{
|
||||
limit = 28;
|
||||
}
|
||||
}
|
||||
/* April, June, September and November have 30 days.*/
|
||||
else if(month == apr || month == jun || month == sep || month == nov)
|
||||
{
|
||||
limit = 30;
|
||||
}
|
||||
/* All other months have 31 days.*/
|
||||
else
|
||||
{
|
||||
limit = 31;
|
||||
}
|
||||
/* Loop on every day of the month.*/
|
||||
for(i = 1; i <= limit; i++)
|
||||
{
|
||||
/* If it's the first day of the month and it's Sunday, increase
|
||||
* counter, except if year=1900 (we need to count Sundays from
|
||||
* 1901 to 2000.*/
|
||||
if(year > 1900 && i == 1 && day == sun)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
/* Change day of the week.*/
|
||||
day = (day + 1) % 7;
|
||||
}
|
||||
/* At the end of the month, go to next month.*/
|
||||
month = (month + 1) % 12;
|
||||
|
||||
/* If we're back to january, increase the year.*/
|
||||
if(month == jan)
|
||||
{
|
||||
year++;
|
||||
}
|
||||
}
|
||||
/* If we're back to january, increase the year.*/
|
||||
if(month == jan)
|
||||
{
|
||||
year++;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 19\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 19\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
42
C/p020.c
42
C/p020.c
@ -5,6 +5,8 @@
|
||||
*
|
||||
* Find the sum of the digits in the number 100!*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -12,35 +14,35 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t fact, r, sum;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t fact, r, sum;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Calculate the factorial using the GMP Library and sum the digits.*/
|
||||
mpz_inits(fact, r, sum, NULL);
|
||||
/* Calculate the factorial using the GMP Library and sum the digits.*/
|
||||
mpz_inits(fact, r, sum, NULL);
|
||||
|
||||
mpz_fac_ui(fact, 100);
|
||||
mpz_fac_ui(fact, 100);
|
||||
|
||||
mpz_set_ui(sum, 0);
|
||||
mpz_set_ui(sum, 0);
|
||||
|
||||
while(mpz_cmp_ui(fact, 0))
|
||||
{
|
||||
mpz_tdiv_qr_ui(fact, r, fact, 10);
|
||||
mpz_add(sum, sum, r);
|
||||
}
|
||||
while(mpz_cmp_ui(fact, 0))
|
||||
{
|
||||
mpz_tdiv_qr_ui(fact, r, fact, 10);
|
||||
mpz_add(sum, sum, r);
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 20\n");
|
||||
gmp_printf("Answer: %Zd\n", sum);
|
||||
printf("Project Euler, Problem 20\n");
|
||||
gmp_printf("Answer: %Zd\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
mpz_clears(fact, r, sum, NULL);
|
||||
mpz_clears(fact, r, sum, NULL);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
48
C/p021.c
48
C/p021.c
@ -6,6 +6,8 @@
|
||||
*
|
||||
* Evaluate the sum of all the amicable numbers under 10000.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -14,35 +16,35 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, n, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, n, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 2; i < 10000; i++)
|
||||
{
|
||||
/* Calculate the sum of proper divisors with the function
|
||||
* implemented in projecteuler.c.*/
|
||||
n = sum_of_divisors(i, 1);
|
||||
/* If i!=n and the sum of proper divisors of n=i,
|
||||
* sum the pair of numbers and add it to the total.*/
|
||||
if(i != n && sum_of_divisors(n, 1) == i)
|
||||
{
|
||||
sum += i + n;
|
||||
}
|
||||
}
|
||||
for(i = 2; i < 10000; i++)
|
||||
{
|
||||
/* Calculate the sum of proper divisors with the function
|
||||
* implemented in projecteuler.c.*/
|
||||
n = sum_of_divisors(i, 1);
|
||||
/* If i!=n and the sum of proper divisors of n=i,
|
||||
* sum the pair of numbers and add it to the total.*/
|
||||
if(i != n && sum_of_divisors(n, 1) == i)
|
||||
{
|
||||
sum += i + n;
|
||||
}
|
||||
}
|
||||
|
||||
sum /= 2;
|
||||
sum /= 2;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 21\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 21\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
120
C/p022.c
120
C/p022.c
@ -6,6 +6,8 @@
|
||||
*
|
||||
* What is the total of all the name scores in the file?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -16,86 +18,86 @@ int compare(void *string1, void *string2);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
FILE *fp;
|
||||
int i, j, n, len, score, sum = 0;
|
||||
double elapsed;
|
||||
char *line, **names;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
int i, j, n, len, score, sum = 0;
|
||||
double elapsed;
|
||||
char *line, **names;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("names.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "names.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("names.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "names.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
fscanf(fp, "%ms", &line);
|
||||
fscanf(fp, "%ms", &line);
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
len = strlen(line);
|
||||
n = 1;
|
||||
len = strlen(line);
|
||||
n = 1;
|
||||
|
||||
/* Count the names in the file.*/
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
if(line[i] == ',')
|
||||
{
|
||||
n++;
|
||||
}
|
||||
}
|
||||
/* Count the names in the file.*/
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
if(line[i] == ',')
|
||||
{
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
if((names = (char **)malloc(n*sizeof(char *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((names = (char **)malloc(n*sizeof(char *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Save each name in a string.*/
|
||||
names[0] = strtok(line, ",\"");
|
||||
/* Save each name in a string.*/
|
||||
names[0] = strtok(line, ",\"");
|
||||
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
names[i] = strtok(NULL, ",\"");
|
||||
}
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
names[i] = strtok(NULL, ",\"");
|
||||
}
|
||||
|
||||
/* Use quick_sort algorithm implemented in projecteuler.c to sort the names.*/
|
||||
quick_sort((void **)names, 0, n-1, compare);
|
||||
/* Use quick_sort algorithm implemented in projecteuler.c to sort the names.*/
|
||||
quick_sort((void **)names, 0, n-1, compare);
|
||||
|
||||
/* Calculate the score of each name an multiply by its position.*/
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
len = strlen(names[i]);
|
||||
score = 0;
|
||||
for(j = 0; j < len; j++)
|
||||
{
|
||||
score += names[i][j] - 'A' + 1;
|
||||
}
|
||||
score *= (i + 1);
|
||||
sum += score;
|
||||
}
|
||||
/* Calculate the score of each name an multiply by its position.*/
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
len = strlen(names[i]);
|
||||
score = 0;
|
||||
for(j = 0; j < len; j++)
|
||||
{
|
||||
score += names[i][j] - 'A' + 1;
|
||||
}
|
||||
score *= (i + 1);
|
||||
sum += score;
|
||||
}
|
||||
|
||||
free(line);
|
||||
free(line);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 22\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 22\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Function to compare two strings, to pass to the quick_sort function.*/
|
||||
int compare(void *string1, void *string2)
|
||||
{
|
||||
char *s1, *s2;
|
||||
char *s1, *s2;
|
||||
|
||||
s1 = (char *)string1;
|
||||
s2 = (char *)string2;
|
||||
s1 = (char *)string1;
|
||||
s2 = (char *)string2;
|
||||
|
||||
return strcmp(s1, s2);
|
||||
return strcmp(s1, s2);
|
||||
}
|
||||
|
100
C/p023.c
100
C/p023.c
@ -1,4 +1,4 @@
|
||||
/* A perfect number is a number for which the sum of its proper divisors is exactly equal to the number.
|
||||
/* A perfect number is a number for which the sum of its proper divisors is exactly equal to the number.
|
||||
* For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
|
||||
*
|
||||
* A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.
|
||||
@ -10,6 +10,8 @@
|
||||
*
|
||||
* Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -20,69 +22,69 @@ int is_abundant(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ab_nums[28123], sums[28123] = {0};
|
||||
int i, j, sum;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int ab_nums[28123], sums[28123] = {0};
|
||||
int i, j, sum;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 0; i < 28123; i++)
|
||||
{
|
||||
/* Find all abundant numbers smaller than 28123.*/
|
||||
ab_nums[i] = is_abundant(i+1);
|
||||
}
|
||||
for(i = 0; i < 28123; i++)
|
||||
{
|
||||
/* Find all abundant numbers smaller than 28123.*/
|
||||
ab_nums[i] = is_abundant(i+1);
|
||||
}
|
||||
|
||||
/* For every abundant number, sum every other abundant number greater
|
||||
* than itself, until the sum exceeds 28123. Record that the resulting
|
||||
* number is the sum of two abundant numbers.*/
|
||||
for(i = 0; i < 28123; i++)
|
||||
{
|
||||
if(ab_nums[i])
|
||||
{
|
||||
for(j = i; j < 28123; j++)
|
||||
{
|
||||
if(ab_nums[j])
|
||||
/* For every abundant number, sum every other abundant number greater
|
||||
* than itself, until the sum exceeds 28123. Record that the resulting
|
||||
* number is the sum of two abundant numbers.*/
|
||||
for(i = 0; i < 28123; i++)
|
||||
{
|
||||
if(ab_nums[i])
|
||||
{
|
||||
for(j = i; j < 28123; j++)
|
||||
{
|
||||
sum = i + j + 2;
|
||||
if(ab_nums[j])
|
||||
{
|
||||
sum = i + j + 2;
|
||||
|
||||
if(sum <= 28123)
|
||||
{
|
||||
sums[sum-1] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
if(sum <= 28123)
|
||||
{
|
||||
sums[sum-1] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sum = 0;
|
||||
sum = 0;
|
||||
|
||||
/* Sum every number that was not found as a sum of two abundant numbers.*/
|
||||
for(i = 0; i < 28123; i++)
|
||||
{
|
||||
if(!sums[i])
|
||||
{
|
||||
sum += i + 1;
|
||||
}
|
||||
}
|
||||
/* Sum every number that was not found as a sum of two abundant numbers.*/
|
||||
for(i = 0; i < 28123; i++)
|
||||
{
|
||||
if(!sums[i])
|
||||
{
|
||||
sum += i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 23\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 23\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_abundant(int n)
|
||||
{
|
||||
return sum_of_divisors(n, 1) > n;
|
||||
return sum_of_divisors(n, 1) > n;
|
||||
}
|
||||
|
94
C/p024.c
94
C/p024.c
@ -5,6 +5,8 @@
|
||||
*
|
||||
* What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -14,69 +16,69 @@ int compare(void *a, void *b);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, res[10];
|
||||
int **perm;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, res[10];
|
||||
int **perm;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((perm = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((perm = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((perm[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
*perm[i] = i;
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((perm[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
*perm[i] = i;
|
||||
}
|
||||
|
||||
for(i = 0; i < 999999; i++)
|
||||
{
|
||||
/* Function that generates permutations in lexicographic order.
|
||||
* Finish when the 1000000th is found.*/
|
||||
next_permutation((void **)perm, 10, compare);
|
||||
}
|
||||
for(i = 0; i < 999999; i++)
|
||||
{
|
||||
/* Function that generates permutations in lexicographic order.
|
||||
* Finish when the 1000000th is found.*/
|
||||
next_permutation((void **)perm, 10, compare);
|
||||
}
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
res[i] = *perm[i];
|
||||
free(perm[i]);
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
res[i] = *perm[i];
|
||||
free(perm[i]);
|
||||
}
|
||||
|
||||
free(perm);
|
||||
free(perm);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 24\n");
|
||||
printf("Answer: ");
|
||||
printf("Project Euler, Problem 24\n");
|
||||
printf("Answer: ");
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
printf("%d", res[i]);
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
printf("%d", res[i]);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
printf("\n");
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compare(void *a, void *b)
|
||||
{
|
||||
int *n1, *n2;
|
||||
int *n1, *n2;
|
||||
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
|
||||
return *n1 - *n2;
|
||||
return *n1 - *n2;
|
||||
}
|
||||
|
92
C/p025.c
92
C/p025.c
@ -19,6 +19,8 @@
|
||||
*
|
||||
* What is the index of the first term in the Fibonacci sequence to contain 1000 digits?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -27,61 +29,61 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t f1, f2, fn;
|
||||
char *num;
|
||||
size_t size;
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t f1, f2, fn;
|
||||
char *num;
|
||||
size_t size;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init_set_ui(f1, 1);
|
||||
mpz_init_set_ui(f2, 1);
|
||||
mpz_init(fn);
|
||||
mpz_init_set_ui(f1, 1);
|
||||
mpz_init_set_ui(f2, 1);
|
||||
mpz_init(fn);
|
||||
|
||||
i = 2;
|
||||
i = 2;
|
||||
|
||||
while(1)
|
||||
{
|
||||
/* Use the GMP Library to calculate the Fibonacci numbers.*/
|
||||
mpz_add(fn, f1, f2);
|
||||
i++;
|
||||
while(1)
|
||||
{
|
||||
/* Use the GMP Library to calculate the Fibonacci numbers.*/
|
||||
mpz_add(fn, f1, f2);
|
||||
i++;
|
||||
|
||||
/* The function mpz_sizeinbase gives the number of digits of
|
||||
* the number in the given base, but the result is either exact
|
||||
* or one too big. To check the exact size, the number is
|
||||
* converted to string and the strlen function is used.*/
|
||||
if((size = mpz_sizeinbase(fn, 10)) >= 1000)
|
||||
{
|
||||
if((num = (char *)malloc((2+size)*sizeof(char))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
gmp_sprintf(num, "%Zd", fn);
|
||||
size = strlen(num);
|
||||
free(num);
|
||||
if(size == 1000)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
/* The function mpz_sizeinbase gives the number of digits of
|
||||
* the number in the given base, but the result is either exact
|
||||
* or one too big. To check the exact size, the number is
|
||||
* converted to string and the strlen function is used.*/
|
||||
if((size = mpz_sizeinbase(fn, 10)) >= 1000)
|
||||
{
|
||||
if((num = (char *)malloc((2+size)*sizeof(char))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
gmp_sprintf(num, "%Zd", fn);
|
||||
size = strlen(num);
|
||||
free(num);
|
||||
if(size == 1000)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
mpz_set(f1, f2);
|
||||
mpz_set(f2, fn);
|
||||
}
|
||||
mpz_set(f1, f2);
|
||||
mpz_set(f2, fn);
|
||||
}
|
||||
|
||||
mpz_clears(f1, f2, fn, NULL);
|
||||
mpz_clears(f1, f2, fn, NULL);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 25\n");
|
||||
printf("Answer: %d\n", i);
|
||||
printf("Project Euler, Problem 25\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
100
C/p026.c
100
C/p026.c
@ -14,6 +14,8 @@
|
||||
*
|
||||
* Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -22,67 +24,67 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, n, max = 0, max_n = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t k, div;
|
||||
int i, j, n, max = 0, max_n = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t k, div;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init(k);
|
||||
mpz_init(div);
|
||||
mpz_init(k);
|
||||
mpz_init(div);
|
||||
|
||||
for(i = 2; i < 1000; i++)
|
||||
{
|
||||
j = i;
|
||||
for(i = 2; i < 1000; i++)
|
||||
{
|
||||
j = i;
|
||||
|
||||
/* The repeating cycle of 1/(2^a*5^b*p^c*...) is equal to
|
||||
* that of 1/p^c*..., so factors 2 and 5 can be eliminated.*/
|
||||
while(j % 2 == 0 && j > 1)
|
||||
j /= 2;
|
||||
/* The repeating cycle of 1/(2^a*5^b*p^c*...) is equal to
|
||||
* that of 1/p^c*..., so factors 2 and 5 can be eliminated.*/
|
||||
while(j % 2 == 0 && j > 1)
|
||||
j /= 2;
|
||||
|
||||
while(j % 5 == 0 && j > 1)
|
||||
j /= 5;
|
||||
while(j % 5 == 0 && j > 1)
|
||||
j /= 5;
|
||||
|
||||
/* If the denominator had only factors 2 and 5, there is no
|
||||
* repeating cycle.*/
|
||||
if(j == 1)
|
||||
n = 0;
|
||||
else
|
||||
{
|
||||
n = 1;
|
||||
mpz_set_ui(k, 9);
|
||||
mpz_set_ui(div, j);
|
||||
/* If the denominator had only factors 2 and 5, there is no
|
||||
* repeating cycle.*/
|
||||
if(j == 1)
|
||||
n = 0;
|
||||
else
|
||||
{
|
||||
n = 1;
|
||||
mpz_set_ui(k, 9);
|
||||
mpz_set_ui(div, j);
|
||||
|
||||
/* After eliminating factors 2s and 5s, the length of the repeating cycle
|
||||
* of 1/d is the smallest n for which k=10^n-1/d is an integer. So we start
|
||||
* with k=9, then k=99, k=999 and so on until k is divisible by d.
|
||||
* The number of digits of k is the length of the repeating cycle.*/
|
||||
while(!mpz_divisible_p(k, div))
|
||||
{
|
||||
n++;
|
||||
mpz_mul_ui(k, k, 10);
|
||||
mpz_add_ui(k, k, 9);
|
||||
}
|
||||
/* After eliminating factors 2s and 5s, the length of the repeating cycle
|
||||
* of 1/d is the smallest n for which k=10^n-1/d is an integer. So we start
|
||||
* with k=9, then k=99, k=999 and so on until k is divisible by d.
|
||||
* The number of digits of k is the length of the repeating cycle.*/
|
||||
while(!mpz_divisible_p(k, div))
|
||||
{
|
||||
n++;
|
||||
mpz_mul_ui(k, k, 10);
|
||||
mpz_add_ui(k, k, 9);
|
||||
}
|
||||
|
||||
if(n > max)
|
||||
{
|
||||
max = n;
|
||||
max_n = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(n > max)
|
||||
{
|
||||
max = n;
|
||||
max_n = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mpz_clears(k, div, NULL);
|
||||
mpz_clears(k, div, NULL);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 26\n");
|
||||
printf("Answer: %d\n", max_n);
|
||||
printf("Project Euler, Problem 26\n");
|
||||
printf("Answer: %d\n", max_n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
86
C/p027.c
86
C/p027.c
@ -17,6 +17,8 @@
|
||||
*
|
||||
* Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -25,56 +27,56 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int a, b, n, p, count, max = 0, save_a, save_b;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int a, b, n, p, count, max = 0, save_a, save_b;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Brute force approach, optimized by checking only values of b where b is prime.*/
|
||||
for(a = -999; a < 1000; a++)
|
||||
{
|
||||
for(b = 2; b <= 1000; b++)
|
||||
{
|
||||
/* For n=0, n^2+an+b=b, so b must be prime.*/
|
||||
if(is_prime(b))
|
||||
{
|
||||
n = 0;
|
||||
count = 0;
|
||||
|
||||
while(1)
|
||||
/* Brute force approach, optimized by checking only values of b where b is prime.*/
|
||||
for(a = -999; a < 1000; a++)
|
||||
{
|
||||
for(b = 2; b <= 1000; b++)
|
||||
{
|
||||
/* For n=0, n^2+an+b=b, so b must be prime.*/
|
||||
if(is_prime(b))
|
||||
{
|
||||
p = n * n + a * n + b;
|
||||
n = 0;
|
||||
count = 0;
|
||||
|
||||
if(p > 1 && is_prime(p))
|
||||
{
|
||||
count++;
|
||||
n++;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
while(1)
|
||||
{
|
||||
p = n * n + a * n + b;
|
||||
|
||||
if(p > 1 && is_prime(p))
|
||||
{
|
||||
count++;
|
||||
n++;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(count > max)
|
||||
{
|
||||
max = count;
|
||||
save_a = a;
|
||||
save_b = b;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(count > max)
|
||||
{
|
||||
max = count;
|
||||
save_a = a;
|
||||
save_b = b;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
printf("Project Euler, Problem 27\n");
|
||||
printf("Answer: %d\n", save_a * save_b);
|
||||
|
||||
printf("Project Euler, Problem 27\n");
|
||||
printf("Answer: %d\n", save_a * save_b);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
48
C/p028.c
48
C/p028.c
@ -10,6 +10,8 @@
|
||||
*
|
||||
* What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -18,35 +20,35 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, step = 0, limit = N * N, sum = 1;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, step = 0, limit = N * N, sum = 1;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Starting with the central 1, it's easy to see that the next four numbers in the diagonal
|
||||
* are 1+2, 1+2+2, 1+2+2+2 and 1+2+2+2+2, then for the next four number the step is increased
|
||||
* by two, so from 9 to 9+4, 9+4+4 etc, for the next four number the step is again increased
|
||||
* by two, and so on. We go on until the value is equal to N*N, with N=1001 for this problem.*/
|
||||
for(i = 0, j = 1; j < limit; i = (i + 1) % 4)
|
||||
{
|
||||
if(i == 0)
|
||||
{
|
||||
step += 2;
|
||||
}
|
||||
/* Starting with the central 1, it's easy to see that the next four numbers in the diagonal
|
||||
* are 1+2, 1+2+2, 1+2+2+2 and 1+2+2+2+2, then for the next four number the step is increased
|
||||
* by two, so from 9 to 9+4, 9+4+4 etc, for the next four number the step is again increased
|
||||
* by two, and so on. We go on until the value is equal to N*N, with N=1001 for this problem.*/
|
||||
for(i = 0, j = 1; j < limit; i = (i + 1) % 4)
|
||||
{
|
||||
if(i == 0)
|
||||
{
|
||||
step += 2;
|
||||
}
|
||||
|
||||
j += step;
|
||||
sum += j;
|
||||
}
|
||||
j += step;
|
||||
sum += j;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 28\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 28\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
122
C/p029.c
122
C/p029.c
@ -11,6 +11,8 @@
|
||||
*
|
||||
* How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -21,86 +23,86 @@ int compare(void *a, void *b);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
mpz_t a;
|
||||
mpz_t **powers;
|
||||
int i, j, count;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t a;
|
||||
mpz_t **powers;
|
||||
int i, j, count;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((powers = (mpz_t **)malloc(9801*sizeof(mpz_t *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((powers = (mpz_t **)malloc(9801*sizeof(mpz_t *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 9801; i++)
|
||||
{
|
||||
if((powers[i] = (mpz_t *)malloc(sizeof(mpz_t))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 9801; i++)
|
||||
{
|
||||
if((powers[i] = (mpz_t *)malloc(sizeof(mpz_t))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
mpz_init(a);
|
||||
mpz_init(a);
|
||||
|
||||
for(i = 0; i < 9801; i++)
|
||||
{
|
||||
mpz_init(*powers[i]);
|
||||
}
|
||||
for(i = 0; i < 9801; i++)
|
||||
{
|
||||
mpz_init(*powers[i]);
|
||||
}
|
||||
|
||||
/* Using the GMP Library to calculate all the powers.*/
|
||||
for(i = 2; i <= 100; i++)
|
||||
{
|
||||
mpz_set_ui(a, i);
|
||||
for(j = 2; j <= 100; j++)
|
||||
{
|
||||
mpz_pow_ui(*powers[(i-2)*99+j-2], a, j);
|
||||
}
|
||||
}
|
||||
/* Using the GMP Library to calculate all the powers.*/
|
||||
for(i = 2; i <= 100; i++)
|
||||
{
|
||||
mpz_set_ui(a, i);
|
||||
for(j = 2; j <= 100; j++)
|
||||
{
|
||||
mpz_pow_ui(*powers[(i-2)*99+j-2], a, j);
|
||||
}
|
||||
}
|
||||
|
||||
mpz_clear(a);
|
||||
mpz_clear(a);
|
||||
|
||||
/* Sort the values and count the different values.*/
|
||||
quick_sort((void **)powers, 0, 9800, compare);
|
||||
count = 1;
|
||||
/* Sort the values and count the different values.*/
|
||||
quick_sort((void **)powers, 0, 9800, compare);
|
||||
count = 1;
|
||||
|
||||
for(i = 1; i < 9801; i++)
|
||||
{
|
||||
if(mpz_cmp(*powers[i], *powers[i-1]))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
for(i = 1; i < 9801; i++)
|
||||
{
|
||||
if(mpz_cmp(*powers[i], *powers[i-1]))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < 9801; i++)
|
||||
{
|
||||
mpz_clear(*powers[i]);
|
||||
free(powers[i]);
|
||||
}
|
||||
for(i = 0; i < 9801; i++)
|
||||
{
|
||||
mpz_clear(*powers[i]);
|
||||
free(powers[i]);
|
||||
}
|
||||
|
||||
free(powers);
|
||||
free(powers);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 29\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 29\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compare(void *a, void *b)
|
||||
{
|
||||
mpz_t *n1, *n2;
|
||||
mpz_t *n1, *n2;
|
||||
|
||||
n1 = (mpz_t *)a;
|
||||
n2 = (mpz_t *)b;
|
||||
n1 = (mpz_t *)a;
|
||||
n2 = (mpz_t *)b;
|
||||
|
||||
return mpz_cmp(*n1, *n2);
|
||||
return mpz_cmp(*n1, *n2);
|
||||
}
|
||||
|
58
C/p030.c
58
C/p030.c
@ -10,6 +10,8 @@
|
||||
*
|
||||
* Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -17,41 +19,41 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, digit, sum, sum_tot = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, digit, sum, sum_tot = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Straightforward brute force approach. The limit is chosen considering that
|
||||
* 6*9^5=354294, so no number larger than that can be expressed as sum
|
||||
* of 5th power of its digits.*/
|
||||
for(i = 10; i < 354295; i++)
|
||||
{
|
||||
j = i;
|
||||
sum = 0;
|
||||
/* Straightforward brute force approach. The limit is chosen considering that
|
||||
* 6*9^5=354294, so no number larger than that can be expressed as sum
|
||||
* of 5th power of its digits.*/
|
||||
for(i = 10; i < 354295; i++)
|
||||
{
|
||||
j = i;
|
||||
sum = 0;
|
||||
|
||||
while(j > 0)
|
||||
{
|
||||
digit = j % 10;
|
||||
sum += (pow(digit, 5));
|
||||
j /= 10;
|
||||
}
|
||||
while(j > 0)
|
||||
{
|
||||
digit = j % 10;
|
||||
sum += (pow(digit, 5));
|
||||
j /= 10;
|
||||
}
|
||||
|
||||
if(sum == i)
|
||||
{
|
||||
sum_tot += i;
|
||||
}
|
||||
}
|
||||
if(sum == i)
|
||||
{
|
||||
sum_tot += i;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed=(end.tv_sec-start.tv_sec)+(double)(end.tv_nsec-start.tv_nsec)/1000000000;
|
||||
elapsed=(end.tv_sec-start.tv_sec)+(double)(end.tv_nsec-start.tv_nsec)/1000000000;
|
||||
|
||||
printf("Project Euler, problem 30\n");
|
||||
printf("Answer: %d\n", sum_tot);
|
||||
printf("Project Euler, problem 30\n");
|
||||
printf("Answer: %d\n", sum_tot);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
62
C/p031.c
62
C/p031.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* How many different ways can £2 be made using any number of coins?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -18,49 +20,49 @@ int coins[8] = {1, 2, 5, 10, 20, 50, 100, 200};
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
n = count(0, 0, 0);
|
||||
n = count(0, 0, 0);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 31\n");
|
||||
printf("Answer: %d\n", n);
|
||||
printf("Project Euler, Problem 31\n");
|
||||
printf("Answer: %d\n", n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Simple recursive function that tries every combination.*/
|
||||
int count(int value, int n, int i)
|
||||
{
|
||||
int j;
|
||||
int j;
|
||||
|
||||
for(j = i; j < 8; j++)
|
||||
{
|
||||
value += coins[j];
|
||||
for(j = i; j < 8; j++)
|
||||
{
|
||||
value += coins[j];
|
||||
|
||||
if(value == 200)
|
||||
{
|
||||
return n + 1;
|
||||
}
|
||||
else if(value > 200)
|
||||
{
|
||||
return n;
|
||||
}
|
||||
else
|
||||
{
|
||||
n = count(value, n, j);
|
||||
value -= coins[j];
|
||||
}
|
||||
}
|
||||
if(value == 200)
|
||||
{
|
||||
return n + 1;
|
||||
}
|
||||
else if(value > 200)
|
||||
{
|
||||
return n;
|
||||
}
|
||||
else
|
||||
{
|
||||
n = count(value, n, j);
|
||||
value -= coins[j];
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
return n;
|
||||
}
|
||||
|
200
C/p032.c
200
C/p032.c
@ -7,6 +7,8 @@
|
||||
*
|
||||
* HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -17,129 +19,129 @@ int compare(void *a, void *b);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, p, sum, n = 0, num;
|
||||
int **products;
|
||||
char num_s[10];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, p, sum, n = 0, num;
|
||||
int **products;
|
||||
char num_s[10];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Initially I used a bigger array, but printing the resulting products
|
||||
* shows that 10 values are sufficient.*/
|
||||
if((products = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
/* Initially I used a bigger array, but printing the resulting products
|
||||
* shows that 10 values are sufficient.*/
|
||||
if((products = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((products[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((products[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* To get a 1 to 9 pandigital concatenation of the two factors and product,
|
||||
* we need to multiply a 1 digit number times a 4 digit numbers (the biggest
|
||||
* one digit number 9 times the biggest 3 digit number 999 multiplied give
|
||||
* 8991 and the total digit count is 8, which is not enough), or a 2 digit
|
||||
* number times a 3 digit number (the smallest two different 3 digits number,
|
||||
* 100 and 101, multiplied give 10100, and the total digit count is 11, which
|
||||
* is too many). The outer loop starts at 2 because 1 times any number gives
|
||||
* the same number, so its digit will be repeated and the result can't be
|
||||
* pandigital. The nested loop starts from 1234 because it's the smallest
|
||||
* 4-digit number with no repeated digits, and it ends at 4987 because it's
|
||||
* the biggest number without repeated digits that multiplied by 2 gives a
|
||||
* 4 digit number. */
|
||||
for(i = 2; i < 9; i++)
|
||||
{
|
||||
for(j = 1234; j < 4987; j++)
|
||||
{
|
||||
p = i * j;
|
||||
sprintf(num_s, "%d%d%d", i, j, p);
|
||||
/* To get a 1 to 9 pandigital concatenation of the two factors and product,
|
||||
* we need to multiply a 1 digit number times a 4 digit numbers (the biggest
|
||||
* one digit number 9 times the biggest 3 digit number 999 multiplied give
|
||||
* 8991 and the total digit count is 8, which is not enough), or a 2 digit
|
||||
* number times a 3 digit number (the smallest two different 3 digits number,
|
||||
* 100 and 101, multiplied give 10100, and the total digit count is 11, which
|
||||
* is too many). The outer loop starts at 2 because 1 times any number gives
|
||||
* the same number, so its digit will be repeated and the result can't be
|
||||
* pandigital. The nested loop starts from 1234 because it's the smallest
|
||||
* 4-digit number with no repeated digits, and it ends at 4987 because it's
|
||||
* the biggest number without repeated digits that multiplied by 2 gives a
|
||||
* 4 digit number. */
|
||||
for(i = 2; i < 9; i++)
|
||||
{
|
||||
for(j = 1234; j < 4987; j++)
|
||||
{
|
||||
p = i * j;
|
||||
sprintf(num_s, "%d%d%d", i, j, p);
|
||||
|
||||
if(strlen(num_s) > 9)
|
||||
{
|
||||
break;
|
||||
}
|
||||
if(strlen(num_s) > 9)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
num = atoi(num_s);
|
||||
num = atoi(num_s);
|
||||
|
||||
if(is_pandigital(num, 9))
|
||||
{
|
||||
*products[n] = p;
|
||||
n++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(is_pandigital(num, 9))
|
||||
{
|
||||
*products[n] = p;
|
||||
n++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* The outer loop starts at 12 because 10 has a 0 and 11 has two 1s, so
|
||||
* the result can't be pandigital. The nested loop starts at 123 because
|
||||
* it's the smallest 3-digit number with no digit repetitions and ends at
|
||||
* 833, because 834*12 has 5 digits.*/
|
||||
for(i = 12; i < 99; i++)
|
||||
{
|
||||
for(j = 123; j < 834; j++)
|
||||
{
|
||||
p = i * j;
|
||||
sprintf(num_s, "%d%d%d", i, j, p);
|
||||
/* The outer loop starts at 12 because 10 has a 0 and 11 has two 1s, so
|
||||
* the result can't be pandigital. The nested loop starts at 123 because
|
||||
* it's the smallest 3-digit number with no digit repetitions and ends at
|
||||
* 833, because 834*12 has 5 digits.*/
|
||||
for(i = 12; i < 99; i++)
|
||||
{
|
||||
for(j = 123; j < 834; j++)
|
||||
{
|
||||
p = i * j;
|
||||
sprintf(num_s, "%d%d%d", i, j, p);
|
||||
|
||||
if(strlen(num_s) > 9)
|
||||
{
|
||||
break;
|
||||
}
|
||||
if(strlen(num_s) > 9)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
num = atoi(num_s);
|
||||
num = atoi(num_s);
|
||||
|
||||
if(is_pandigital(num, 9))
|
||||
{
|
||||
*products[n] = p;
|
||||
n++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Sort the found products to easily see if there are duplicates.*/
|
||||
insertion_sort((void **)products, 0, n-1, compare);
|
||||
if(is_pandigital(num, 9))
|
||||
{
|
||||
*products[n] = p;
|
||||
n++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sum = *products[0];
|
||||
/* Sort the found products to easily see if there are duplicates.*/
|
||||
insertion_sort((void **)products, 0, n-1, compare);
|
||||
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
if(*products[i] != *products[i-1])
|
||||
{
|
||||
sum += *products[i];
|
||||
}
|
||||
}
|
||||
sum = *products[0];
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
free(products[i]);
|
||||
}
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
if(*products[i] != *products[i-1])
|
||||
{
|
||||
sum += *products[i];
|
||||
}
|
||||
}
|
||||
|
||||
free(products);
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
free(products[i]);
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
free(products);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 32\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 32\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compare(void *a, void *b)
|
||||
{
|
||||
int *n1, *n2;
|
||||
int *n1, *n2;
|
||||
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
|
||||
return *n1 - *n2;
|
||||
return *n1 - *n2;
|
||||
}
|
||||
|
68
C/p033.c
68
C/p033.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* If the product of these four fractions is given in its lowest common terms, find the value of the denominator.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -15,47 +17,47 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, n, d, prod_n = 1, prod_d = 1, div;
|
||||
float f1, f2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, n, d, prod_n = 1, prod_d = 1, div;
|
||||
float f1, f2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 11; i < 100; i++)
|
||||
{
|
||||
for(j = 11; j < 100; j++)
|
||||
{
|
||||
/* If the example is non-trivial, check if cancelling the digit that's equal
|
||||
* in numerator and denominator gives the same fraction.*/
|
||||
if(i % 10 && j % 10 && i != j && i % 10 == j / 10)
|
||||
{
|
||||
n = i / 10;
|
||||
d = j % 10;
|
||||
|
||||
f1 = (float)i / j;
|
||||
f2 = (float)n / d;
|
||||
|
||||
if(f1 == f2)
|
||||
for(i = 11; i < 100; i++)
|
||||
{
|
||||
for(j = 11; j < 100; j++)
|
||||
{
|
||||
/* If the example is non-trivial, check if cancelling the digit that's equal
|
||||
* in numerator and denominator gives the same fraction.*/
|
||||
if(i % 10 && j % 10 && i != j && i % 10 == j / 10)
|
||||
{
|
||||
prod_n *= i;
|
||||
prod_d *= j;
|
||||
n = i / 10;
|
||||
d = j % 10;
|
||||
|
||||
f1 = (float)i / j;
|
||||
f2 = (float)n / d;
|
||||
|
||||
if(f1 == f2)
|
||||
{
|
||||
prod_n *= i;
|
||||
prod_d *= j;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Find the greater common divisor of the fraction found.*/
|
||||
div = gcd(prod_n, prod_d);
|
||||
/* Find the greater common divisor of the fraction found.*/
|
||||
div = gcd(prod_n, prod_d);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 33\n");
|
||||
printf("Answer: %d\n", prod_d/div);
|
||||
printf("Project Euler, Problem 33\n");
|
||||
printf("Answer: %d\n", prod_d/div);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
94
C/p034.c
94
C/p034.c
@ -4,6 +4,8 @@
|
||||
*
|
||||
* Note: as 1! = 1 and 2! = 2 are not sums they are not included.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -11,66 +13,66 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
unsigned long int digit;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t a, b, q, sum_f, sum, factorials[10];
|
||||
int i;
|
||||
unsigned long int digit;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t a, b, q, sum_f, sum, factorials[10];
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init_set_ui(a, 10);
|
||||
mpz_init_set_ui(sum, 0);
|
||||
mpz_inits(b, q, sum_f, sum, NULL);
|
||||
mpz_init_set_ui(a, 10);
|
||||
mpz_init_set_ui(sum, 0);
|
||||
mpz_inits(b, q, sum_f, sum, NULL);
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
mpz_init_set_ui(factorials[i], 1);
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
mpz_init_set_ui(factorials[i], 1);
|
||||
}
|
||||
|
||||
/* Pre-calculate factorials of each digit from 0 to 9.*/
|
||||
for(i = 2; i < 10; i++)
|
||||
{
|
||||
mpz_fac_ui(factorials[i], i);
|
||||
}
|
||||
/* Pre-calculate factorials of each digit from 0 to 9.*/
|
||||
for(i = 2; i < 10; i++)
|
||||
{
|
||||
mpz_fac_ui(factorials[i], i);
|
||||
}
|
||||
|
||||
/* 9!*7<9999999, so 9999999 is certainly un upper bound.*/
|
||||
while(mpz_cmp_ui(a, 9999999) < 0)
|
||||
{
|
||||
mpz_set(b, a);
|
||||
mpz_set_ui(sum_f, 0);
|
||||
/* 9!*7<9999999, so 9999999 is certainly un upper bound.*/
|
||||
while(mpz_cmp_ui(a, 9999999) < 0)
|
||||
{
|
||||
mpz_set(b, a);
|
||||
mpz_set_ui(sum_f, 0);
|
||||
|
||||
while(mpz_cmp_ui(b, 0))
|
||||
{
|
||||
digit = mpz_fdiv_qr_ui(b, q, b, 10);
|
||||
mpz_add(sum_f, sum_f, factorials[digit]);
|
||||
}
|
||||
while(mpz_cmp_ui(b, 0))
|
||||
{
|
||||
digit = mpz_fdiv_qr_ui(b, q, b, 10);
|
||||
mpz_add(sum_f, sum_f, factorials[digit]);
|
||||
}
|
||||
|
||||
if(!mpz_cmp(a, sum_f))
|
||||
{
|
||||
mpz_add(sum, sum, a);
|
||||
}
|
||||
if(!mpz_cmp(a, sum_f))
|
||||
{
|
||||
mpz_add(sum, sum, a);
|
||||
}
|
||||
|
||||
mpz_add_ui(a, a, 1);
|
||||
}
|
||||
mpz_add_ui(a, a, 1);
|
||||
}
|
||||
|
||||
mpz_clears(a, b, q, sum_f, NULL);
|
||||
mpz_clears(a, b, q, sum_f, NULL);
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
mpz_clear(factorials[i]);
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
mpz_clear(factorials[i]);
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 34\n");
|
||||
gmp_printf("Answer: %Zd\n", sum);
|
||||
printf("Project Euler, Problem 34\n");
|
||||
gmp_printf("Answer: %Zd\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
mpz_clear(sum);
|
||||
mpz_clear(sum);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
122
C/p035.c
122
C/p035.c
@ -4,6 +4,8 @@
|
||||
*
|
||||
* How many circular primes are there below one million?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -18,83 +20,83 @@ int *primes;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count = 13;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, count = 13;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Calculate all primes below one million, then check if they're circular.*/
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
/* Calculate all primes below one million, then check if they're circular.*/
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Starting from 101 because we already know that there are 13 circular primes below 100.*/
|
||||
for(i = 101; i < 1000000; i += 2)
|
||||
{
|
||||
if(is_circular_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
/* Starting from 101 because we already know that there are 13 circular primes below 100.*/
|
||||
for(i = 101; i < 1000000; i += 2)
|
||||
{
|
||||
if(is_circular_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
free(primes);
|
||||
free(primes);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 35\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 35\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_circular_prime(int n)
|
||||
{
|
||||
int i, tmp, count;
|
||||
int i, tmp, count;
|
||||
|
||||
/* If n is not prime, it's obviously not a circular prime.*/
|
||||
if(primes[n] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
/* If n is not prime, it's obviously not a circular prime.*/
|
||||
if(primes[n] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* The primes below 10 are circular primes.*/
|
||||
if(primes[n] == 1 && n < 10)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
/* The primes below 10 are circular primes.*/
|
||||
if(primes[n] == 1 && n < 10)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
tmp = n;
|
||||
count = 0;
|
||||
tmp = n;
|
||||
count = 0;
|
||||
|
||||
while(tmp > 0)
|
||||
{
|
||||
/* If the number has one or more even digits, it can't be a circular prime.
|
||||
* because at least one of the rotations will be even.*/
|
||||
if(tmp % 2 == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
/* Count the number of digits.*/
|
||||
count++;
|
||||
tmp /= 10;
|
||||
}
|
||||
while(tmp > 0)
|
||||
{
|
||||
/* If the number has one or more even digits, it can't be a circular prime.
|
||||
* because at least one of the rotations will be even.*/
|
||||
if(tmp % 2 == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
/* Count the number of digits.*/
|
||||
count++;
|
||||
tmp /= 10;
|
||||
}
|
||||
|
||||
for(i = 1; i < count; i++)
|
||||
{
|
||||
/* Generate rotations and check if they're prime.*/
|
||||
n = n % (int)pow(10, count-1) * 10 + n / (int)pow(10, count-1);
|
||||
if(primes[n] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
for(i = 1; i < count; i++)
|
||||
{
|
||||
/* Generate rotations and check if they're prime.*/
|
||||
n = n % (int)pow(10, count-1) * 10 + n / (int)pow(10, count-1);
|
||||
if(primes[n] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
42
C/p036.c
42
C/p036.c
@ -4,6 +4,8 @@
|
||||
*
|
||||
* (Please note that the palindromic number, in either base, may not include leading zeros.)*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -13,31 +15,31 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Brute force approach. For every number below 1 million,
|
||||
* check if they're palindrome in base 2 and 10 using the
|
||||
* function implemented in projecteuler.c.*/
|
||||
for(i = 1; i < N; i += 2)
|
||||
{
|
||||
if(is_palindrome(i, 10) && is_palindrome(i, 2))
|
||||
{
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
/* Brute force approach. For every number below 1 million,
|
||||
* check if they're palindrome in base 2 and 10 using the
|
||||
* function implemented in projecteuler.c.*/
|
||||
for(i = 1; i < N; i += 2)
|
||||
{
|
||||
if(is_palindrome(i, 10) && is_palindrome(i, 2))
|
||||
{
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 36\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 36\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
110
C/p037.c
110
C/p037.c
@ -5,6 +5,8 @@
|
||||
*
|
||||
* NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -15,75 +17,75 @@ int is_tr_prime(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i = 0, n = 1, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i = 0, n = 1, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Check every number until 11 truncatable primes are found.*/
|
||||
while(i < 11)
|
||||
{
|
||||
if(is_tr_prime(n))
|
||||
{
|
||||
sum += n;
|
||||
i++;
|
||||
}
|
||||
n++;
|
||||
}
|
||||
/* Check every number until 11 truncatable primes are found.*/
|
||||
while(i < 11)
|
||||
{
|
||||
if(is_tr_prime(n))
|
||||
{
|
||||
sum += n;
|
||||
i++;
|
||||
}
|
||||
n++;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 37\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 37\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_tr_prime(int n)
|
||||
{
|
||||
int i, tmp;
|
||||
int i, tmp;
|
||||
|
||||
/* One-digit numbers and non-prime numbers are
|
||||
* not truncatable primes.*/
|
||||
if(n < 11 || !is_prime(n))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
/* One-digit numbers and non-prime numbers are
|
||||
* not truncatable primes.*/
|
||||
if(n < 11 || !is_prime(n))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Remove one digit at a time from the right and check
|
||||
* if the resulting number is prime. Return 0 if it isn't.*/
|
||||
tmp = n / 10;
|
||||
/* Remove one digit at a time from the right and check
|
||||
* if the resulting number is prime. Return 0 if it isn't.*/
|
||||
tmp = n / 10;
|
||||
|
||||
while(tmp > 0)
|
||||
{
|
||||
if(!is_prime(tmp))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
tmp /= 10;
|
||||
}
|
||||
while(tmp > 0)
|
||||
{
|
||||
if(!is_prime(tmp))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
tmp /= 10;
|
||||
}
|
||||
|
||||
/* Starting from the last digit, check if it's prime, then
|
||||
* add back one digit at a time on the left and check if it
|
||||
* is prime. Return 0 when it isn't.*/
|
||||
i = 10;
|
||||
tmp = n % i;
|
||||
/* Starting from the last digit, check if it's prime, then
|
||||
* add back one digit at a time on the left and check if it
|
||||
* is prime. Return 0 when it isn't.*/
|
||||
i = 10;
|
||||
tmp = n % i;
|
||||
|
||||
while(tmp != n)
|
||||
{
|
||||
if(!is_prime(tmp))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
i *= 10;
|
||||
tmp = n % i;
|
||||
}
|
||||
while(tmp != n)
|
||||
{
|
||||
if(!is_prime(tmp))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
i *= 10;
|
||||
tmp = n % i;
|
||||
}
|
||||
|
||||
/* If it gets here, the number is truncatable prime.*/
|
||||
return 1;
|
||||
/* If it gets here, the number is truncatable prime.*/
|
||||
return 1;
|
||||
}
|
||||
|
106
C/p038.c
106
C/p038.c
@ -11,6 +11,8 @@
|
||||
*
|
||||
* What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -18,64 +20,64 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, tmp;
|
||||
long int n, max = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, tmp;
|
||||
long int n, max = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* A brute force approach is used, starting with 1 and multiplying
|
||||
* the number by 1, 2 etc., concatenating the results, checking if
|
||||
* it's 1 to 9 pandigital, and going to the next number when the
|
||||
* concatenated result is greater than the greatest 9 digit pandigital
|
||||
* value. The limit is set to 10000, since 1*10000=10000, 2*10000=20000 and
|
||||
* concatenating this two numbers a 10-digit number is obtained.*/
|
||||
for(i = 1; i < 10000; i++)
|
||||
{
|
||||
n = 0;
|
||||
j = 1;
|
||||
do
|
||||
{
|
||||
tmp = i * j;
|
||||
n += tmp;
|
||||
j++;
|
||||
/* A brute force approach is used, starting with 1 and multiplying
|
||||
* the number by 1, 2 etc., concatenating the results, checking if
|
||||
* it's 1 to 9 pandigital, and going to the next number when the
|
||||
* concatenated result is greater than the greatest 9 digit pandigital
|
||||
* value. The limit is set to 10000, since 1*10000=10000, 2*10000=20000 and
|
||||
* concatenating this two numbers a 10-digit number is obtained.*/
|
||||
for(i = 1; i < 10000; i++)
|
||||
{
|
||||
n = 0;
|
||||
j = 1;
|
||||
do
|
||||
{
|
||||
tmp = i * j;
|
||||
n += tmp;
|
||||
j++;
|
||||
|
||||
if(n > max && is_pandigital(n, 9))
|
||||
{
|
||||
max = n;
|
||||
}
|
||||
if(i * j < 10)
|
||||
{
|
||||
n *= 10;
|
||||
}
|
||||
else if(i * j < 100)
|
||||
{
|
||||
n *= 100;
|
||||
}
|
||||
else if(i * j < 1000)
|
||||
{
|
||||
n *= 1000;
|
||||
}
|
||||
else if(i * j < 10000)
|
||||
{
|
||||
n *= 10000;
|
||||
}
|
||||
else if(i * j < 100000)
|
||||
{
|
||||
n *= 100000;
|
||||
}
|
||||
}while(n <= 987654321);
|
||||
}
|
||||
if(n > max && is_pandigital(n, 9))
|
||||
{
|
||||
max = n;
|
||||
}
|
||||
if(i * j < 10)
|
||||
{
|
||||
n *= 10;
|
||||
}
|
||||
else if(i * j < 100)
|
||||
{
|
||||
n *= 100;
|
||||
}
|
||||
else if(i * j < 1000)
|
||||
{
|
||||
n *= 1000;
|
||||
}
|
||||
else if(i * j < 10000)
|
||||
{
|
||||
n *= 10000;
|
||||
}
|
||||
else if(i * j < 100000)
|
||||
{
|
||||
n *= 100000;
|
||||
}
|
||||
} while(n <= 987654321);
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 38\n");
|
||||
printf("Answer: %ld\n", max);
|
||||
printf("Project Euler, Problem 38\n");
|
||||
printf("Answer: %ld\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
134
C/p039.c
134
C/p039.c
@ -4,87 +4,89 @@
|
||||
*
|
||||
* For which value of p ≤ 1000, is the number of solutions maximised?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int p, m, n, a, b, c, count, max = 0, res = 0, tmpa, tmpb, tmpc, i;
|
||||
int savedc[1000] = {0};
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int p, m, n, a, b, c, count, max = 0, res = 0, tmpa, tmpb, tmpc, i;
|
||||
int savedc[1000] = {0};
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Start with p=12 (the smallest pythagorean triplet is (3,4,5) and 3+4+5=12.*/
|
||||
for(p = 12; p <= 1000; p++)
|
||||
{
|
||||
count = 0;
|
||||
a = 0;
|
||||
b = 0;
|
||||
c = 0;
|
||||
/* Start with p=12 (the smallest pythagorean triplet is (3,4,5) and 3+4+5=12.*/
|
||||
for(p = 12; p <= 1000; p++)
|
||||
{
|
||||
count = 0;
|
||||
a = 0;
|
||||
b = 0;
|
||||
c = 0;
|
||||
|
||||
/* Generate pythagorean triplets.*/
|
||||
for(m = 2; m * m < p; m++)
|
||||
{
|
||||
for(n = 1; n < m; n++)
|
||||
{
|
||||
a = m * m - n * n;
|
||||
b = 2 * m * n;
|
||||
c = m * m + n * n;
|
||||
|
||||
/* Increase counter if a+b+c=p and the triplet is new,
|
||||
* then save the value of c to avoid counting the same
|
||||
* triplet more than once.*/
|
||||
if(a + b + c == p && !savedc[c])
|
||||
/* Generate pythagorean triplets.*/
|
||||
for(m = 2; m * m < p; m++)
|
||||
{
|
||||
for(n = 1; n < m; n++)
|
||||
{
|
||||
savedc[c] = 1;
|
||||
count++;
|
||||
a = m * m - n * n;
|
||||
b = 2 * m * n;
|
||||
c = m * m + n * n;
|
||||
|
||||
/* Increase counter if a+b+c=p and the triplet is new,
|
||||
* then save the value of c to avoid counting the same
|
||||
* triplet more than once.*/
|
||||
if(a + b + c == p && !savedc[c])
|
||||
{
|
||||
savedc[c] = 1;
|
||||
count++;
|
||||
}
|
||||
|
||||
i = 2;
|
||||
tmpa = a;
|
||||
tmpb = b;
|
||||
tmpc = c;
|
||||
|
||||
/* Check all the triplets obtained multiplying a, b and c
|
||||
* for integer numbers, until the perimeters exceeds p.*/
|
||||
while(tmpa + tmpb + tmpc < p)
|
||||
{
|
||||
tmpa = a * i;
|
||||
tmpb = b * i;
|
||||
tmpc = c * i;
|
||||
|
||||
/* Increase counter if the new a, b and c give a perimeter=p.*/
|
||||
if(tmpa + tmpb + tmpc == p && !savedc[tmpc])
|
||||
{
|
||||
savedc[tmpc] = 1;
|
||||
count++;
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
i = 2;
|
||||
tmpa = a;
|
||||
tmpb = b;
|
||||
tmpc = c;
|
||||
/* If the current value is greater than the maximum,
|
||||
* save the new maximum and the value of p.*/
|
||||
if(count > max)
|
||||
{
|
||||
max = count;
|
||||
res = p;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check all the triplets obtained multiplying a, b and c
|
||||
* for integer numbers, until the perimeters exceeds p.*/
|
||||
while(tmpa + tmpb + tmpc < p)
|
||||
{
|
||||
tmpa = a * i;
|
||||
tmpb = b * i;
|
||||
tmpc = c * i;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
/* Increase counter if the new a, b and c give a perimeter=p.*/
|
||||
if(tmpa + tmpb + tmpc == p && !savedc[tmpc])
|
||||
{
|
||||
savedc[tmpc] = 1;
|
||||
count++;
|
||||
}
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("Project Euler, Problem 39\n");
|
||||
printf("Answer: %d\n", res);
|
||||
|
||||
/* If the current value is greater than the maximum,
|
||||
* save the new maximum and the value of p.*/
|
||||
if(count > max)
|
||||
{
|
||||
max = count;
|
||||
res = p;
|
||||
}
|
||||
}
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 39\n");
|
||||
printf("Answer: %d\n", res);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
136
C/p040.c
136
C/p040.c
@ -8,86 +8,88 @@
|
||||
*
|
||||
* d_1 × d_10 × d_100 × d_1000 × d_10000 × d_100000 × d_1000000*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, value, n;
|
||||
int digits[1000005];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, value, n;
|
||||
int digits[1000005];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
i = 1;
|
||||
value = 1;
|
||||
i = 1;
|
||||
value = 1;
|
||||
|
||||
/* Loop on all numbers and put the digits in the right place
|
||||
* in an array. Use modulo and division to get the digits
|
||||
* for numbers with more than one digit.*/
|
||||
while(i <= 1000000)
|
||||
{
|
||||
if(value < 10)
|
||||
{
|
||||
digits[i-1] = value;
|
||||
i++;
|
||||
}
|
||||
else if(value < 100)
|
||||
{
|
||||
digits[i-1] = value / 10;
|
||||
digits[i] = value % 10;
|
||||
i += 2;
|
||||
}
|
||||
else if(value < 1000)
|
||||
{
|
||||
digits[i-1] = value / 100;
|
||||
digits[i] = (value / 10) % 10;
|
||||
digits[i+1] = value % 10;
|
||||
i += 3;
|
||||
}
|
||||
else if(value < 10000)
|
||||
{
|
||||
digits[i-1] = value / 1000;
|
||||
digits[i] = (value / 100) % 10;
|
||||
digits[i+1] = (value / 10) % 10;
|
||||
digits[i+2] = value % 10;
|
||||
i += 4;
|
||||
}
|
||||
else if(value < 100000)
|
||||
{
|
||||
digits[i-1] = value / 10000;
|
||||
digits[i] = (value / 1000) % 10;
|
||||
digits[i+1] = (value / 100) % 10;
|
||||
digits[i+2] = (value / 10) % 10;
|
||||
digits[i+3] = value % 10;
|
||||
i += 5;
|
||||
}
|
||||
else if(value < 1000000)
|
||||
{
|
||||
digits[i-1] = value / 100000;
|
||||
digits[i] = (value / 10000) % 10;
|
||||
digits[i+1] = (value / 1000) % 10;
|
||||
digits[i+2] = (value / 100) % 10;
|
||||
digits[i+3] = (value / 10) % 10;
|
||||
digits[i+4] = value % 10;
|
||||
i += 6;
|
||||
}
|
||||
value++;
|
||||
}
|
||||
/* Loop on all numbers and put the digits in the right place
|
||||
* in an array. Use modulo and division to get the digits
|
||||
* for numbers with more than one digit.*/
|
||||
while(i <= 1000000)
|
||||
{
|
||||
if(value < 10)
|
||||
{
|
||||
digits[i-1] = value;
|
||||
i++;
|
||||
}
|
||||
else if(value < 100)
|
||||
{
|
||||
digits[i-1] = value / 10;
|
||||
digits[i] = value % 10;
|
||||
i += 2;
|
||||
}
|
||||
else if(value < 1000)
|
||||
{
|
||||
digits[i-1] = value / 100;
|
||||
digits[i] = (value / 10) % 10;
|
||||
digits[i+1] = value % 10;
|
||||
i += 3;
|
||||
}
|
||||
else if(value < 10000)
|
||||
{
|
||||
digits[i-1] = value / 1000;
|
||||
digits[i] = (value / 100) % 10;
|
||||
digits[i+1] = (value / 10) % 10;
|
||||
digits[i+2] = value % 10;
|
||||
i += 4;
|
||||
}
|
||||
else if(value < 100000)
|
||||
{
|
||||
digits[i-1] = value / 10000;
|
||||
digits[i] = (value / 1000) % 10;
|
||||
digits[i+1] = (value / 100) % 10;
|
||||
digits[i+2] = (value / 10) % 10;
|
||||
digits[i+3] = value % 10;
|
||||
i += 5;
|
||||
}
|
||||
else if(value < 1000000)
|
||||
{
|
||||
digits[i-1] = value / 100000;
|
||||
digits[i] = (value / 10000) % 10;
|
||||
digits[i+1] = (value / 1000) % 10;
|
||||
digits[i+2] = (value / 100) % 10;
|
||||
digits[i+3] = (value / 10) % 10;
|
||||
digits[i+4] = value % 10;
|
||||
i += 6;
|
||||
}
|
||||
value++;
|
||||
}
|
||||
|
||||
/* Calculate the product.*/
|
||||
n = digits[0] * digits[9] * digits[99] * digits[999] * digits[9999] * digits[99999] * digits[999999];
|
||||
/* Calculate the product.*/
|
||||
n = digits[0] * digits[9] * digits[99] * digits[999] * digits[9999] * digits[99999] * digits[999999];
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 40\n");
|
||||
printf("Answer: %d\n", n);
|
||||
printf("Project Euler, Problem 40\n");
|
||||
printf("Answer: %d\n", n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
76
C/p041.c
76
C/p041.c
@ -1,8 +1,10 @@
|
||||
/* We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital
|
||||
/* We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital
|
||||
* and is also prime.
|
||||
*
|
||||
* What is the largest n-digit pandigital prime that exists?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -13,53 +15,53 @@ int count_digits(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
/* 8- and 9-digit pandigital numbers can't be prime, because
|
||||
* 1+2+...+8=36, which is divisible by 3, and 36+9=45 which is
|
||||
* also divisible by 3, and therefore the whole number is divisible
|
||||
* by 3. So we can start from the largest 7-digit pandigital number,
|
||||
* until we find a prime.*/
|
||||
int i = 7654321;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
/* 8- and 9-digit pandigital numbers can't be prime, because
|
||||
* 1+2+...+8=36, which is divisible by 3, and 36+9=45 which is
|
||||
* also divisible by 3, and therefore the whole number is divisible
|
||||
* by 3. So we can start from the largest 7-digit pandigital number,
|
||||
* until we find a prime.*/
|
||||
int i = 7654321;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
while(i > 0)
|
||||
{
|
||||
if(is_pandigital(i, count_digits(i)) && is_prime(i))
|
||||
{
|
||||
break;
|
||||
}
|
||||
/*Skipping the even numbers.*/
|
||||
i -= 2;
|
||||
}
|
||||
while(i > 0)
|
||||
{
|
||||
if(is_pandigital(i, count_digits(i)) && is_prime(i))
|
||||
{
|
||||
break;
|
||||
}
|
||||
/*Skipping the even numbers.*/
|
||||
i -= 2;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 41\n");
|
||||
printf("Answer: %d\n", i);
|
||||
printf("Project Euler, Problem 41\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count_digits(int n)
|
||||
{
|
||||
int i = 0;
|
||||
|
||||
if(n == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
int i = 0;
|
||||
|
||||
while(n > 0)
|
||||
{
|
||||
i++;
|
||||
n /= 10;
|
||||
}
|
||||
if(n == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
return i;
|
||||
while(n > 0)
|
||||
{
|
||||
i++;
|
||||
n /= 10;
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
132
C/p042.c
132
C/p042.c
@ -8,6 +8,8 @@
|
||||
* Using words.txt (right click and 'Save Link/Target As...'), a 16K text file containing nearly two-thousand common English words,
|
||||
* how many are triangle words?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -17,93 +19,93 @@ int is_triang(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, n, len, value, count = 0;
|
||||
char *line, **words;
|
||||
double elapsed;
|
||||
FILE *fp;
|
||||
struct timespec start, end;
|
||||
int i, j, n, len, value, count = 0;
|
||||
char *line, **words;
|
||||
double elapsed;
|
||||
FILE *fp;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("words.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "words.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("words.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "words.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
fscanf(fp, "%ms", &line);
|
||||
fscanf(fp, "%ms", &line);
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
n = 1;
|
||||
len = strlen(line);
|
||||
n = 1;
|
||||
len = strlen(line);
|
||||
|
||||
/* Count the words.*/
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
if(line[i] == ',')
|
||||
{
|
||||
n++;
|
||||
}
|
||||
}
|
||||
/* Count the words.*/
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
if(line[i] == ',')
|
||||
{
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
if((words = (char **)malloc(n*sizeof(char *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((words = (char **)malloc(n*sizeof(char *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Save the words in an array of strings.*/
|
||||
words[0] = strtok(line, ",\"");
|
||||
/* Save the words in an array of strings.*/
|
||||
words[0] = strtok(line, ",\"");
|
||||
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
words[i] = strtok(NULL, ",\"");
|
||||
}
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
words[i] = strtok(NULL, ",\"");
|
||||
}
|
||||
|
||||
/* For each word, calculate its value and check if it's a triangle number.*/
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
value = 0;
|
||||
len = strlen(words[i]);
|
||||
/* For each word, calculate its value and check if it's a triangle number.*/
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
value = 0;
|
||||
len = strlen(words[i]);
|
||||
|
||||
for(j = 0; j < len; j++)
|
||||
{
|
||||
value += (words[i][j] - 'A' + 1);
|
||||
}
|
||||
for(j = 0; j < len; j++)
|
||||
{
|
||||
value += (words[i][j] - 'A' + 1);
|
||||
}
|
||||
|
||||
if(is_triang(value))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
if(is_triang(value))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
free(line);
|
||||
free(words);
|
||||
free(line);
|
||||
free(words);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec-start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec-start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 42\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 42\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_triang(int n)
|
||||
{
|
||||
int i, j;
|
||||
int i, j;
|
||||
|
||||
for(i = 1, j = 1; j <= n; i++, j += i)
|
||||
{
|
||||
if(n == j)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 1, j = 1; j <= n; i++, j += i)
|
||||
{
|
||||
if(n == j)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
158
C/p043.c
158
C/p043.c
@ -13,6 +13,8 @@
|
||||
*
|
||||
* Find the sum of all 0 to 9 pandigital numbers with this property.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -23,116 +25,116 @@ int has_property(int **n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
int **n;
|
||||
long int sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i;
|
||||
int **n;
|
||||
long int sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((n = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((n[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
*n[i] = i;
|
||||
}
|
||||
if((n = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Find the next permutation and check if it has the required property.
|
||||
* Repeat until all the permutations have been found.*/
|
||||
while(next_permutation((void **)n, 10, compare) != -1)
|
||||
{
|
||||
if(has_property(n))
|
||||
{
|
||||
sum += *n[0] * 1e9 + *n[1] * 1e8 + *n[2] * 1e7 + *n[3] * 1e6 + *n[4] * 1e5 +
|
||||
*n[5] * 1e4 + *n[6] * 1e3 + *n[7] * 1e2 + *n[8] * 1e1 + *n[9];
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((n[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
*n[i] = i;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
/* Find the next permutation and check if it has the required property.
|
||||
* Repeat until all the permutations have been found.*/
|
||||
while(next_permutation((void **)n, 10, compare) != -1)
|
||||
{
|
||||
if(has_property(n))
|
||||
{
|
||||
sum += *n[0] * 1e9 + *n[1] * 1e8 + *n[2] * 1e7 + *n[3] * 1e6 + *n[4] * 1e5 +
|
||||
*n[5] * 1e4 + *n[6] * 1e3 + *n[7] * 1e2 + *n[8] * 1e1 + *n[9];
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 43\n");
|
||||
printf("Answer: %ld\n", sum);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 43\n");
|
||||
printf("Answer: %ld\n", sum);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compare(void *a, void *b)
|
||||
{
|
||||
int *n1, *n2;
|
||||
int *n1, *n2;
|
||||
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
|
||||
return *n1 - *n2;
|
||||
return *n1 - *n2;
|
||||
}
|
||||
|
||||
/* Function to check if the value has the desired property.*/
|
||||
int has_property(int **n)
|
||||
{
|
||||
long int value;
|
||||
long int value;
|
||||
|
||||
value = *n[1] * 100 + *n[2] * 10 + *n[3];
|
||||
value = *n[1] * 100 + *n[2] * 10 + *n[3];
|
||||
|
||||
if(value % 2 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(value % 2 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
value = *n[2] * 100 + *n[3] * 10 + *n[4];
|
||||
value = *n[2] * 100 + *n[3] * 10 + *n[4];
|
||||
|
||||
if(value % 3 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(value % 3 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
value = *n[3] * 100 + *n[4] * 10 + *n[5];
|
||||
value = *n[3] * 100 + *n[4] * 10 + *n[5];
|
||||
|
||||
if(value % 5 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(value % 5 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
value = *n[4] * 100 + *n[5] * 10 + *n[6];
|
||||
value = *n[4] * 100 + *n[5] * 10 + *n[6];
|
||||
|
||||
if(value % 7 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(value % 7 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
value = *n[5] * 100 + *n[6] * 10 + *n[7];
|
||||
value = *n[5] * 100 + *n[6] * 10 + *n[7];
|
||||
|
||||
if(value % 11 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(value % 11 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
value = *n[6] * 100 + *n[7] * 10 + *n[8];
|
||||
value = *n[6] * 100 + *n[7] * 10 + *n[8];
|
||||
|
||||
if(value %13 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(value %13 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
value = *n[7] * 100 + *n[8] * 10 + *n[9];
|
||||
value = *n[7] * 100 + *n[8] * 10 + *n[9];
|
||||
|
||||
if(value % 17 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(value % 17 != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
58
C/p044.c
58
C/p044.c
@ -7,6 +7,8 @@
|
||||
* Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference are pentagonal and D = |Pk − Pj| is minimised;
|
||||
* what is the value of D?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -15,42 +17,42 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int n, m, pn, pm, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int n, m, pn, pm, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
n = 2;
|
||||
n = 2;
|
||||
|
||||
/* Check all couples of pentagonal numbers until the right one
|
||||
* is found. Use the function implemented in projecteuler.c to
|
||||
* check if the sum and difference ot the two numbers is pentagonal.*/
|
||||
while(!found)
|
||||
{
|
||||
pn = n * (3 * n - 1) / 2;
|
||||
/* Check all couples of pentagonal numbers until the right one
|
||||
* is found. Use the function implemented in projecteuler.c to
|
||||
* check if the sum and difference ot the two numbers is pentagonal.*/
|
||||
while(!found)
|
||||
{
|
||||
pn = n * (3 * n - 1) / 2;
|
||||
|
||||
for(m = 1; m < n; m++)
|
||||
{
|
||||
pm = m * (3 * m - 1) / 2;
|
||||
for(m = 1; m < n; m++)
|
||||
{
|
||||
pm = m * (3 * m - 1) / 2;
|
||||
|
||||
if(is_pentagonal(pn+pm) && is_pentagonal(pn-pm))
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
n++;
|
||||
}
|
||||
if(is_pentagonal(pn+pm) && is_pentagonal(pn-pm))
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
n++;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 44\n");
|
||||
printf("Answer: %d\n", pn-pm);
|
||||
printf("Project Euler, Problem 44\n");
|
||||
printf("Answer: %d\n", pn-pm);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
52
C/p045.c
52
C/p045.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* Find the next triangle number that is also pentagonal and hexagonal.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -16,37 +18,37 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int found = 0;
|
||||
long int i, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int found = 0;
|
||||
long int i, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
i = 143;
|
||||
i = 143;
|
||||
|
||||
while(!found)
|
||||
{
|
||||
i++;
|
||||
/* Hexagonal numbers are also triangle numbers, so it's sufficient
|
||||
* to generate hexagonal numbers (starting from H_144) and check if
|
||||
* they're also pentagonal.*/
|
||||
n = i * (2 * i - 1);
|
||||
|
||||
if(is_pentagonal(n))
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
while(!found)
|
||||
{
|
||||
i++;
|
||||
/* Hexagonal numbers are also triangle numbers, so it's sufficient
|
||||
* to generate hexagonal numbers (starting from H_144) and check if
|
||||
* they're also pentagonal.*/
|
||||
n = i * (2 * i - 1);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(is_pentagonal(n))
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 45\n");
|
||||
printf("Answer: %ld\n", n);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 45\n");
|
||||
printf("Answer: %ld\n", n);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
106
C/p046.c
106
C/p046.c
@ -11,6 +11,8 @@
|
||||
*
|
||||
* What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -25,73 +27,73 @@ int *primes;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* For every odd number, check if it's prime, if it is check
|
||||
* if it satisfies the Goldbach property. Continue until the
|
||||
* first number that doesn't is found.*/
|
||||
for(i = 3; !found && i < N; i += 2)
|
||||
{
|
||||
if(!primes[i])
|
||||
{
|
||||
if(!goldbach(i))
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* For every odd number, check if it's prime, if it is check
|
||||
* if it satisfies the Goldbach property. Continue until the
|
||||
* first number that doesn't is found.*/
|
||||
for(i = 3; !found && i < N; i += 2)
|
||||
{
|
||||
if(!primes[i])
|
||||
{
|
||||
if(!goldbach(i))
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(primes);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
free(primes);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 46\n");
|
||||
printf("Answer: %d\n", i-2);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 46\n");
|
||||
printf("Answer: %d\n", i-2);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int goldbach(int n)
|
||||
{
|
||||
int i, j, tmp;
|
||||
int i, j, tmp;
|
||||
|
||||
/* Check every prime smaller than n.*/
|
||||
for(i = 3; i < n; i += 2)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
j = 1;
|
||||
/* Check every prime smaller than n.*/
|
||||
for(i = 3; i < n; i += 2)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
j = 1;
|
||||
|
||||
/* Check if summing twice a square to the prime number
|
||||
* gives n. Return 1 when succeeding.*/
|
||||
do
|
||||
{
|
||||
tmp = i + 2 * j * j;
|
||||
|
||||
if(tmp == n)
|
||||
/* Check if summing twice a square to the prime number
|
||||
* gives n. Return 1 when succeeding.*/
|
||||
do
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
tmp = i + 2 * j * j;
|
||||
|
||||
j++;
|
||||
}while(tmp < n);
|
||||
}
|
||||
}
|
||||
if(tmp == n)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Return 0 if no solution is found.*/
|
||||
return 0;
|
||||
j++;
|
||||
} while(tmp < n);
|
||||
}
|
||||
}
|
||||
|
||||
/* Return 0 if no solution is found.*/
|
||||
return 0;
|
||||
}
|
||||
|
104
C/p047.c
104
C/p047.c
@ -11,6 +11,8 @@
|
||||
*
|
||||
* Find the first four consecutive integers to have four distinct prime factors each. What is the first of these numbers?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -22,74 +24,74 @@ int *count_factors(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count, res;
|
||||
int *factors;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, count, res;
|
||||
int *factors;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((factors = count_factors(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Count_factors function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((factors = count_factors(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Count_factors function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
count = 0;
|
||||
count = 0;
|
||||
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
if(factors[i] == 4)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
else
|
||||
{
|
||||
count = 0;
|
||||
}
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
if(factors[i] == 4)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
else
|
||||
{
|
||||
count = 0;
|
||||
}
|
||||
|
||||
if(count == 4)
|
||||
{
|
||||
res = i - 3;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(count == 4)
|
||||
{
|
||||
res = i - 3;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 47\n");
|
||||
printf("Answer: %d\n", res);
|
||||
printf("Project Euler, Problem 47\n");
|
||||
printf("Answer: %d\n", res);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Function using a modified sieve of Eratosthenes to count
|
||||
* the distinct prime factors of each number.*/
|
||||
int *count_factors(int n)
|
||||
{
|
||||
int i = 2, j;
|
||||
int *factors;
|
||||
int i = 2, j;
|
||||
int *factors;
|
||||
|
||||
if((factors = (int *)calloc(n, sizeof(int))) == NULL)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
if((factors = (int *)calloc(n, sizeof(int))) == NULL)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
while(i < n / 2)
|
||||
{
|
||||
if(factors[i] == 0)
|
||||
{
|
||||
for(j = i; j < n; j += i)
|
||||
{
|
||||
factors[j]++;
|
||||
}
|
||||
}
|
||||
i++;
|
||||
}
|
||||
while(i < n / 2)
|
||||
{
|
||||
if(factors[i] == 0)
|
||||
{
|
||||
for(j = i; j < n; j += i)
|
||||
{
|
||||
factors[j]++;
|
||||
}
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
return factors;
|
||||
return factors;
|
||||
}
|
||||
|
48
C/p048.c
48
C/p048.c
@ -8,38 +8,40 @@
|
||||
#include <time.h>
|
||||
#include <gmp.h>
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t power, sum;
|
||||
char *res;
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t power, sum;
|
||||
char *res;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init_set_ui(sum, 0);
|
||||
mpz_init(power);
|
||||
mpz_init_set_ui(sum, 0);
|
||||
mpz_init(power);
|
||||
|
||||
/* Simply calculate the sum of the powers using the GMP Library.*/
|
||||
for(i = 1; i <= 1000; i++)
|
||||
{
|
||||
mpz_ui_pow_ui(power, i, i);
|
||||
mpz_add(sum, sum, power);
|
||||
}
|
||||
/* Simply calculate the sum of the powers using the GMP Library.*/
|
||||
for(i = 1; i <= 1000; i++)
|
||||
{
|
||||
mpz_ui_pow_ui(power, i, i);
|
||||
mpz_add(sum, sum, power);
|
||||
}
|
||||
|
||||
res = mpz_get_str(NULL, 10, sum);
|
||||
|
||||
mpz_clears(power, sum, NULL);
|
||||
res = mpz_get_str(NULL, 10, sum);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
mpz_clears(power, sum, NULL);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 48\n");
|
||||
printf("Answer: %s\n", res+strlen(res)-10);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 48\n");
|
||||
printf("Answer: %s\n", res+strlen(res)-10);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
128
C/p049.c
128
C/p049.c
@ -6,6 +6,8 @@
|
||||
*
|
||||
* What 12-digit number do you form by concatenating the three terms in this sequence?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -20,86 +22,86 @@ int *primes;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i = 1489, j, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i = 1489, j, found = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Starting from i=1489 (bigger than the first number in the sequence given in the problem),
|
||||
* check odd numbers. If they're prime, loop on even numbers j (odd+even=odd, odd+odd=even and
|
||||
* we need odd numbers because we're looking for primes) up to 4254 (1489+2*4256=10001 which has
|
||||
* 5 digits.*/
|
||||
while(i < N)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
for(j = 2; j < 4255; j += 2)
|
||||
{
|
||||
/* If i, i+j and i+2*j are all primes and they have
|
||||
* all the same digits, the result has been found.*/
|
||||
if(i + 2 * j < N && primes[i+j] && primes[i+2*j] &&
|
||||
is_permutation(i, i+j) && is_permutation(i, i+2*j))
|
||||
/* Starting from i=1489 (bigger than the first number in the sequence given in the problem),
|
||||
* check odd numbers. If they're prime, loop on even numbers j (odd+even=odd, odd+odd=even and
|
||||
* we need odd numbers because we're looking for primes) up to 4254 (1489+2*4256=10001 which has
|
||||
* 5 digits.*/
|
||||
while(i < N)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
for(j = 2; j < 4255; j += 2)
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
/* If i, i+j and i+2*j are all primes and they have
|
||||
* all the same digits, the result has been found.*/
|
||||
if(i + 2 * j < N && primes[i+j] && primes[i+2*j] &&
|
||||
is_permutation(i, i+j) && is_permutation(i, i+2*j))
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if(found)
|
||||
{
|
||||
break;
|
||||
}
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
if(found)
|
||||
{
|
||||
break;
|
||||
}
|
||||
i += 2;
|
||||
}
|
||||
|
||||
free(primes);
|
||||
free(primes);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 49\n");
|
||||
printf("Answer: %d%d%d\n", i, i+j, i+2*j);
|
||||
printf("Project Euler, Problem 49\n");
|
||||
printf("Answer: %d%d%d\n", i, i+j, i+2*j);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_permutation(int a, int b)
|
||||
{
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
124
C/p050.c
124
C/p050.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* Which prime, below one-million, can be written as the sum of the most consecutive primes?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -18,78 +20,78 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, max = 0, max_p = 0, sum, count;
|
||||
int *primes;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, max = 0, max_p = 0, sum, count;
|
||||
int *primes;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Starting from a prime i, add consecutive primes until the
|
||||
* sum exceeds the limit, every time the sum is also a prime
|
||||
* save the value and the count if the count is larger than the
|
||||
* current maximum. Repeat for all primes below N.
|
||||
* A separate loop is used for i=2, so later only odd numbers are
|
||||
* checked for primality.*/
|
||||
i = 2;
|
||||
count = 1;
|
||||
sum = i;
|
||||
/* Starting from a prime i, add consecutive primes until the
|
||||
* sum exceeds the limit, every time the sum is also a prime
|
||||
* save the value and the count if the count is larger than the
|
||||
* current maximum. Repeat for all primes below N.
|
||||
* A separate loop is used for i=2, so later only odd numbers are
|
||||
* checked for primality.*/
|
||||
i = 2;
|
||||
count = 1;
|
||||
sum = i;
|
||||
|
||||
for(j = i + 1; j < N && sum < N; j++)
|
||||
{
|
||||
if(primes[j])
|
||||
{
|
||||
sum += j;
|
||||
count++;
|
||||
for(j = i + 1; j < N && sum < N; j++)
|
||||
{
|
||||
if(primes[j])
|
||||
{
|
||||
sum += j;
|
||||
count++;
|
||||
|
||||
if(sum < N && primes[sum] && count > max)
|
||||
{
|
||||
max = count;
|
||||
max_p = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 3; i < N; i += 2)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
count = 1;
|
||||
sum = i;
|
||||
|
||||
for(j = i + 2; j < N && sum < N; j += 2)
|
||||
{
|
||||
if(primes[j])
|
||||
if(sum < N && primes[sum] && count > max)
|
||||
{
|
||||
sum += j;
|
||||
count++;
|
||||
|
||||
if(sum < N && primes[sum] && count > max)
|
||||
{
|
||||
max = count;
|
||||
max_p = sum;
|
||||
}
|
||||
max = count;
|
||||
max_p = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(primes);
|
||||
for(i = 3; i < N; i += 2)
|
||||
{
|
||||
if(primes[i])
|
||||
{
|
||||
count = 1;
|
||||
sum = i;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
for(j = i + 2; j < N && sum < N; j += 2)
|
||||
{
|
||||
if(primes[j])
|
||||
{
|
||||
sum += j;
|
||||
count++;
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
if(sum < N && primes[sum] && count > max)
|
||||
{
|
||||
max = count;
|
||||
max_p = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
printf("Project Euler, Problem 50\n");
|
||||
printf("Answer: %d\n", max_p);
|
||||
free(primes);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
return 0;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 50\n");
|
||||
printf("Answer: %d\n", max_p);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
178
C/p051.c
178
C/p051.c
@ -7,6 +7,8 @@
|
||||
* Find the smallest prime which, by replacing part of the number (not necessarily adjacent digits) with the same digit, is part of an eight prime
|
||||
* value family.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -23,119 +25,119 @@ int *primes;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* N set to 1000000 as a reasonable limit, which turns out to be enough.*/
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
/* N set to 1000000 as a reasonable limit, which turns out to be enough.*/
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Checking only odd numbers with at least 4 digits.*/
|
||||
for(i = 1001; i < N; i += 2)
|
||||
{
|
||||
/* The family of numbers needs to have at least one of 0, 1 or 2 as
|
||||
* repeated digits, otherwise we can't get a 8 number family (there
|
||||
* are only 7 other digits). Also, the number of repeated digits must
|
||||
* be 3, otherwise at least 3 resulting numbers will be divisible by 3.
|
||||
* So the smallest number of this family must have three 0s, three 1s or
|
||||
* three 2s.*/
|
||||
if(count_digit(i, 0) >= 3 || count_digit(i, 1) >= 3 ||
|
||||
count_digit(i, 2) >= 3)
|
||||
{
|
||||
/* If i is prime, try replacing digits, if obtaining 8 primes, then
|
||||
* this is the result.*/
|
||||
if(primes[i] && replace(i) == 8)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Checking only odd numbers with at least 4 digits.*/
|
||||
for(i = 1001; i < N; i += 2)
|
||||
{
|
||||
/* The family of numbers needs to have at least one of 0, 1 or 2 as
|
||||
* repeated digits, otherwise we can't get a 8 number family (there
|
||||
* are only 7 other digits). Also, the number of repeated digits must
|
||||
* be 3, otherwise at least 3 resulting numbers will be divisible by 3.
|
||||
* So the smallest number of this family must have three 0s, three 1s or
|
||||
* three 2s.*/
|
||||
if(count_digit(i, 0) >= 3 || count_digit(i, 1) >= 3 ||
|
||||
count_digit(i, 2) >= 3)
|
||||
{
|
||||
/* If i is prime, try replacing digits, if obtaining 8 primes, then
|
||||
* this is the result.*/
|
||||
if(primes[i] && replace(i) == 8)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(primes);
|
||||
free(primes);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 51\n");
|
||||
printf("Answer: %d\n", i);
|
||||
printf("Project Euler, Problem 51\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count_digit(int n, int d)
|
||||
{
|
||||
int count = 0;
|
||||
int count = 0;
|
||||
|
||||
while(n > 0)
|
||||
{
|
||||
if(n % 10 == d)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
n /= 10;
|
||||
}
|
||||
while(n > 0)
|
||||
{
|
||||
if(n % 10 == d)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
n /= 10;
|
||||
}
|
||||
|
||||
return count;
|
||||
return count;
|
||||
}
|
||||
|
||||
int replace(int n)
|
||||
{
|
||||
int i, j, k, w, l, count, max = 0, s_to_n;
|
||||
char n_to_s[7];
|
||||
int i, j, k, w, l, count, max = 0, s_to_n;
|
||||
char n_to_s[7];
|
||||
|
||||
sprintf(n_to_s, "%d", n);
|
||||
l = strlen(n_to_s);
|
||||
sprintf(n_to_s, "%d", n);
|
||||
l = strlen(n_to_s);
|
||||
|
||||
for(i = 0; i < l - 3; i++)
|
||||
{
|
||||
for(j = i + 1; j < l - 2; j++)
|
||||
{
|
||||
/* Replacing the last digit can't give 8 primes, because at least
|
||||
* six of the numbers obtained will be divisible by 2 and/or 5.*/
|
||||
for(k = j + 1; k < l - 1; k++)
|
||||
{
|
||||
count = 0;
|
||||
|
||||
for(w = 0; w < 10; w++)
|
||||
for(i = 0; i < l - 3; i++)
|
||||
{
|
||||
for(j = i + 1; j < l - 2; j++)
|
||||
{
|
||||
/* Replacing the last digit can't give 8 primes, because at least
|
||||
* six of the numbers obtained will be divisible by 2 and/or 5.*/
|
||||
for(k = j + 1; k < l - 1; k++)
|
||||
{
|
||||
if(i == 0 && w == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
count = 0;
|
||||
|
||||
sprintf(n_to_s, "%d", n);
|
||||
n_to_s[i] = w + '0';
|
||||
n_to_s[j] = w + '0';
|
||||
n_to_s[k] = w + '0';
|
||||
s_to_n = atoi(n_to_s);
|
||||
for(w = 0; w < 10; w++)
|
||||
{
|
||||
if(i == 0 && w == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if(primes[s_to_n])
|
||||
{
|
||||
if(count == 0 && s_to_n != n)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
sprintf(n_to_s, "%d", n);
|
||||
n_to_s[i] = w + '0';
|
||||
n_to_s[j] = w + '0';
|
||||
n_to_s[k] = w + '0';
|
||||
s_to_n = atoi(n_to_s);
|
||||
|
||||
count++;
|
||||
}
|
||||
if(primes[s_to_n])
|
||||
{
|
||||
if(count == 0 && s_to_n != n)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
if(count > max)
|
||||
{
|
||||
max = count;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(count > max)
|
||||
{
|
||||
max = count;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return max;
|
||||
return max;
|
||||
}
|
||||
|
90
C/p052.c
90
C/p052.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* Find the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and 6x, contain the same digits.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -10,65 +12,65 @@ int is_permutation(int a, int b);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
i = 1;
|
||||
i = 1;
|
||||
|
||||
/* Brute force approach, try every integer number until the desired one is found.*/
|
||||
while(1)
|
||||
{
|
||||
if(is_permutation(i, 2*i) && is_permutation(i, 3*i) && is_permutation(i, 4*i) &&
|
||||
is_permutation(i, 5*i) && is_permutation(i, 6*i))
|
||||
{
|
||||
break;
|
||||
}
|
||||
/* Brute force approach, try every integer number until the desired one is found.*/
|
||||
while(1)
|
||||
{
|
||||
if(is_permutation(i, 2*i) && is_permutation(i, 3*i) && is_permutation(i, 4*i) &&
|
||||
is_permutation(i, 5*i) && is_permutation(i, 6*i))
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 52\n");
|
||||
printf("Answer: %d\n", i);
|
||||
printf("Project Euler, Problem 52\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_permutation(int a, int b)
|
||||
{
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
80
C/p053.c
80
C/p053.c
@ -10,6 +10,8 @@
|
||||
*
|
||||
* How many, not necessarily distinct, values of (n r) for 1≤n≤100, are greater than one-million?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -22,63 +24,63 @@ void binomial(mpz_t bin, unsigned long int n, unsigned long int k, mpz_t *factor
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t bin;
|
||||
mpz_t factorials[N+1];
|
||||
int i, j, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t bin;
|
||||
mpz_t factorials[N+1];
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init(bin);
|
||||
mpz_init(bin);
|
||||
|
||||
mpz_init_set_ui(factorials[0], 1);
|
||||
mpz_init_set_ui(factorials[0], 1);
|
||||
|
||||
/* Straightforward brute force approach, using the GMP Library. First
|
||||
* calculate all factorials, then use them for the binomial coefficients.*/
|
||||
for(i = 1; i <= N; i++)
|
||||
{
|
||||
mpz_init(factorials[i]);
|
||||
mpz_fac_ui(factorials[i], i);
|
||||
}
|
||||
/* Straightforward brute force approach, using the GMP Library. First
|
||||
* calculate all factorials, then use them for the binomial coefficients.*/
|
||||
for(i = 1; i <= N; i++)
|
||||
{
|
||||
mpz_init(factorials[i]);
|
||||
mpz_fac_ui(factorials[i], i);
|
||||
}
|
||||
|
||||
for(i = 23; i <= N; i++)
|
||||
{
|
||||
for(j = 1; j <= i; j++)
|
||||
{
|
||||
binomial(bin, i, j, factorials);
|
||||
for(i = 23; i <= N; i++)
|
||||
{
|
||||
for(j = 1; j <= i; j++)
|
||||
{
|
||||
binomial(bin, i, j, factorials);
|
||||
|
||||
if(mpz_cmp_ui(bin, LIMIT) > 0)
|
||||
count++;
|
||||
}
|
||||
}
|
||||
if(mpz_cmp_ui(bin, LIMIT) > 0)
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
mpz_clear(bin);
|
||||
mpz_clear(bin);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 53\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 53\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void binomial(mpz_t bin, unsigned long n, unsigned long int k, mpz_t *factorials)
|
||||
{
|
||||
mpz_t num, d1, d2;
|
||||
mpz_t num, d1, d2;
|
||||
|
||||
mpz_inits(num, d1, d2, NULL);
|
||||
mpz_inits(num, d1, d2, NULL);
|
||||
|
||||
mpz_set(num, factorials[n]);
|
||||
mpz_set(d1, factorials[k]);
|
||||
mpz_set(d2, factorials[n-k]);
|
||||
mpz_set(num, factorials[n]);
|
||||
mpz_set(d1, factorials[k]);
|
||||
mpz_set(d2, factorials[n-k]);
|
||||
|
||||
mpz_mul(d1, d1, d2);
|
||||
mpz_tdiv_q(bin, num, d1);
|
||||
mpz_mul(d1, d1, d2);
|
||||
mpz_tdiv_q(bin, num, d1);
|
||||
|
||||
mpz_clears(num, d1, d2, NULL);
|
||||
mpz_clears(num, d1, d2, NULL);
|
||||
}
|
||||
|
102
C/p055.c
102
C/p055.c
@ -9,8 +9,8 @@
|
||||
* That is, 349 took three iterations to arrive at a palindrome.
|
||||
*
|
||||
* Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome
|
||||
* through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem,
|
||||
* we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either
|
||||
* through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem,
|
||||
* we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either
|
||||
* (i) become a palindrome in less than fifty iterations, or,
|
||||
* (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, 10677 is the first number to be shown
|
||||
* to require over fifty iterations before producing a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits).
|
||||
@ -21,6 +21,8 @@
|
||||
*
|
||||
* NOTE: Wording was modified slightly on 24 April 2007 to emphasise the theoretical nature of Lychrel numbers.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -31,73 +33,73 @@ int is_lychrel(mpz_t n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t n;
|
||||
int i, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t n;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init(n);
|
||||
mpz_init(n);
|
||||
|
||||
/* For each number, use the is_lychrel function to check if the number
|
||||
* is a Lychrel number.*/
|
||||
for(i = 1; i < 10000; i++)
|
||||
{
|
||||
mpz_set_ui(n, i);
|
||||
/* For each number, use the is_lychrel function to check if the number
|
||||
* is a Lychrel number.*/
|
||||
for(i = 1; i < 10000; i++)
|
||||
{
|
||||
mpz_set_ui(n, i);
|
||||
|
||||
if(is_lychrel(n))
|
||||
count++;
|
||||
}
|
||||
if(is_lychrel(n))
|
||||
count++;
|
||||
}
|
||||
|
||||
mpz_clear(n);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
mpz_clear(n);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 55\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 55\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_lychrel(mpz_t n)
|
||||
{
|
||||
int i;
|
||||
mpz_t tmp, reverse, rem;
|
||||
int i;
|
||||
mpz_t tmp, reverse, rem;
|
||||
|
||||
mpz_inits(tmp, reverse, rem, NULL);
|
||||
mpz_set(tmp, n);
|
||||
mpz_inits(tmp, reverse, rem, NULL);
|
||||
mpz_set(tmp, n);
|
||||
|
||||
/* Run for 50 iterations.*/
|
||||
for(i = 0; i < 50; i++)
|
||||
{
|
||||
mpz_set_ui(reverse, 0);
|
||||
/* Run for 50 iterations.*/
|
||||
for(i = 0; i < 50; i++)
|
||||
{
|
||||
mpz_set_ui(reverse, 0);
|
||||
|
||||
/* Find the reverse of the given number.*/
|
||||
while(mpz_cmp_ui(tmp, 0) > 0)
|
||||
{
|
||||
mpz_mul_ui(reverse, reverse, 10);
|
||||
mpz_tdiv_qr_ui(tmp, rem, tmp, 10);
|
||||
mpz_add(reverse, reverse, rem);
|
||||
}
|
||||
/* Find the reverse of the given number.*/
|
||||
while(mpz_cmp_ui(tmp, 0) > 0)
|
||||
{
|
||||
mpz_mul_ui(reverse, reverse, 10);
|
||||
mpz_tdiv_qr_ui(tmp, rem, tmp, 10);
|
||||
mpz_add(reverse, reverse, rem);
|
||||
}
|
||||
|
||||
/* Add the reverse to the original number.*/
|
||||
mpz_add(tmp, n, reverse);
|
||||
/* Add the reverse to the original number.*/
|
||||
mpz_add(tmp, n, reverse);
|
||||
|
||||
/* If the sum is a palindrome, the number is not a Lychrel number.*/
|
||||
if(is_palindrome_mpz(tmp, 10))
|
||||
{
|
||||
mpz_clears(tmp, reverse, rem, NULL);
|
||||
return 0;
|
||||
}
|
||||
/* If the sum is a palindrome, the number is not a Lychrel number.*/
|
||||
if(is_palindrome_mpz(tmp, 10))
|
||||
{
|
||||
mpz_clears(tmp, reverse, rem, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
mpz_set(n, tmp);
|
||||
}
|
||||
mpz_set(n, tmp);
|
||||
}
|
||||
|
||||
mpz_clears(tmp, reverse, rem, NULL);
|
||||
mpz_clears(tmp, reverse, rem, NULL);
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
54
C/p056.c
54
C/p056.c
@ -3,6 +3,8 @@
|
||||
*
|
||||
* Considering natural numbers of the form, a^b, where a, b < 100, what is the maximum digital sum?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -10,41 +12,41 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int a, b, sum, max = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t pow;
|
||||
int a, b, sum, max = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t pow;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init(pow);
|
||||
mpz_init(pow);
|
||||
|
||||
/* Straightforward brute force approach using the GMP Library.*/
|
||||
for(a = 1; a < 100; a++)
|
||||
{
|
||||
for(b = 1; b < 100; b++)
|
||||
{
|
||||
mpz_ui_pow_ui(pow, a, b);
|
||||
sum = 0;
|
||||
/* Straightforward brute force approach using the GMP Library.*/
|
||||
for(a = 1; a < 100; a++)
|
||||
{
|
||||
for(b = 1; b < 100; b++)
|
||||
{
|
||||
mpz_ui_pow_ui(pow, a, b);
|
||||
sum = 0;
|
||||
|
||||
while(mpz_cmp_ui(pow, 0))
|
||||
sum += mpz_tdiv_q_ui(pow, pow, 10);
|
||||
while(mpz_cmp_ui(pow, 0))
|
||||
sum += mpz_tdiv_q_ui(pow, pow, 10);
|
||||
|
||||
if(sum > max)
|
||||
max = sum;
|
||||
}
|
||||
}
|
||||
if(sum > max)
|
||||
max = sum;
|
||||
}
|
||||
}
|
||||
|
||||
mpz_clear(pow);
|
||||
mpz_clear(pow);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 56\n");
|
||||
printf("Answer: %d\n", max);
|
||||
printf("Project Euler, Problem 56\n");
|
||||
printf("Answer: %d\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
84
C/p057.c
84
C/p057.c
@ -14,6 +14,8 @@
|
||||
*
|
||||
* In the first one-thousand expansions, how many fractions contain a numerator with more digits than the denominator?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -23,64 +25,64 @@ int count_digits(mpz_t n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count = 0;
|
||||
mpz_t n, d, d2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, count = 0;
|
||||
mpz_t n, d, d2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init_set_ui(n, 1);
|
||||
mpz_init_set_ui(d, 1);
|
||||
mpz_init(d2);
|
||||
mpz_init_set_ui(n, 1);
|
||||
mpz_init_set_ui(d, 1);
|
||||
mpz_init(d2);
|
||||
|
||||
/* If n/d is the current term of the expansion, the next term can be calculated as
|
||||
* (n+2d)/(n+d). Using the GMP Library the problem becomes trivial.*/
|
||||
for(i = 1; i < 1000; i++)
|
||||
{
|
||||
mpz_mul_ui(d2, d, 2);
|
||||
mpz_add(d, n, d);
|
||||
mpz_add(n, n, d2);
|
||||
/* If n/d is the current term of the expansion, the next term can be calculated as
|
||||
* (n+2d)/(n+d). Using the GMP Library the problem becomes trivial.*/
|
||||
for(i = 1; i < 1000; i++)
|
||||
{
|
||||
mpz_mul_ui(d2, d, 2);
|
||||
mpz_add(d, n, d);
|
||||
mpz_add(n, n, d2);
|
||||
|
||||
if(count_digits(n) > count_digits(d))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
if(count_digits(n) > count_digits(d))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
mpz_clears(n, d, d2, NULL);
|
||||
mpz_clears(n, d, d2, NULL);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 57\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 57\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count_digits(mpz_t n)
|
||||
{
|
||||
int count = 0;
|
||||
mpz_t value;
|
||||
int count = 0;
|
||||
mpz_t value;
|
||||
|
||||
if(mpz_cmp_ui(n, 0) == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
if(mpz_cmp_ui(n, 0) == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
mpz_init_set(value, n);
|
||||
mpz_init_set(value, n);
|
||||
|
||||
while(mpz_cmp_ui(value, 0))
|
||||
{
|
||||
mpz_tdiv_q_ui(value, value, 10);
|
||||
count++;
|
||||
}
|
||||
while(mpz_cmp_ui(value, 0))
|
||||
{
|
||||
mpz_tdiv_q_ui(value, value, 10);
|
||||
count++;
|
||||
}
|
||||
|
||||
mpz_clear(value);
|
||||
mpz_clear(value);
|
||||
|
||||
return count;
|
||||
return count;
|
||||
}
|
||||
|
78
C/p058.c
78
C/p058.c
@ -14,6 +14,8 @@
|
||||
* If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued,
|
||||
* what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -22,57 +24,57 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i = 1, l = 1, step = 2, count = 0, diag = 5;
|
||||
double ratio, elapsed;
|
||||
struct timespec start, end;
|
||||
int i = 1, l = 1, step = 2, count = 0, diag = 5;
|
||||
double ratio, elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Starting with 1, the next four numbers in the diagonal are 3 (1+2), 5 (1+2+2), 7 (1+2+2+2)
|
||||
* and 9 (1+2+2+2+2). Check which are prime, increment the counter every time a new prime is
|
||||
* found, and divide by the number of elements of the diagonal, which are increase by 4 at
|
||||
* every cycle. The next four number added to the diagonal are 13 (9+4), 17 (9+4+4), 21 and 25.
|
||||
* Then 25+6 etc., at every cycle the step is increased by 2. Continue until the ratio goes below 0.1.*/
|
||||
do
|
||||
{
|
||||
i += step;
|
||||
/* Starting with 1, the next four numbers in the diagonal are 3 (1+2), 5 (1+2+2), 7 (1+2+2+2)
|
||||
* and 9 (1+2+2+2+2). Check which are prime, increment the counter every time a new prime is
|
||||
* found, and divide by the number of elements of the diagonal, which are increase by 4 at
|
||||
* every cycle. The next four number added to the diagonal are 13 (9+4), 17 (9+4+4), 21 and 25.
|
||||
* Then 25+6 etc., at every cycle the step is increased by 2. Continue until the ratio goes below 0.1.*/
|
||||
do
|
||||
{
|
||||
i += step;
|
||||
|
||||
if(is_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
if(is_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
|
||||
i += step;
|
||||
i += step;
|
||||
|
||||
if(is_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
if(is_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
|
||||
i += step;
|
||||
i += step;
|
||||
|
||||
if(is_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
if(is_prime(i))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
|
||||
i += step;
|
||||
ratio = (double)count / diag;
|
||||
i += step;
|
||||
ratio = (double)count / diag;
|
||||
|
||||
step += 2;
|
||||
diag += 4;
|
||||
l += 2;
|
||||
step += 2;
|
||||
diag += 4;
|
||||
l += 2;
|
||||
|
||||
}while(ratio >= 0.1);
|
||||
} while(ratio >= 0.1);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 58\n");
|
||||
printf("Answer: %d\n", l);
|
||||
printf("Project Euler, Problem 58\n");
|
||||
printf("Answer: %d\n", l);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
2
C/p059.c
2
C/p059.c
@ -16,6 +16,8 @@
|
||||
* encrypted ASCII codes, and the knowledge that the plain text must contain common English words, decrypt the message and find the sum of the
|
||||
* ASCII values in the original text.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
144
C/p060.c
144
C/p060.c
@ -4,6 +4,8 @@
|
||||
*
|
||||
* Find the lowest sum for a set of five primes for which any two primes concatenate to produce another prime.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -18,97 +20,97 @@ int *primes;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int found = 0, p1, p2, p3, p4, p5, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int found = 0, p1, p2, p3, p4, p5, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Straightforward brute force approach.*/
|
||||
for(p1 = 3; p1 < N && !found; p1 += 2)
|
||||
{
|
||||
/* If p1 is not prime, go to the next number.*/
|
||||
if(!primes[p1])
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
for(p2 = p1 + 2; p2 < N && !found; p2 += 2)
|
||||
{
|
||||
/* If p2 is not prime, or at least one of the possible concatenations of
|
||||
* p1 and p2 is not prime, go to the next number.*/
|
||||
if(!primes[p2] || !is_prime(cat(p1, p2)) || !is_prime(cat(p2, p1)))
|
||||
{
|
||||
/* Straightforward brute force approach.*/
|
||||
for(p1 = 3; p1 < N && !found; p1 += 2)
|
||||
{
|
||||
/* If p1 is not prime, go to the next number.*/
|
||||
if(!primes[p1])
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
for(p3 = p2 + 2; p3 < N && !found; p3 += 2)
|
||||
{
|
||||
/* If p3 is not prime, or at least one of the possible concatenations of
|
||||
* p1, p2 and p3 is not prime, go to the next number.*/
|
||||
if(!primes[p3] || !is_prime(cat(p1, p3)) || !is_prime(cat(p3, p1)) ||
|
||||
!is_prime(cat(p2, p3)) || !is_prime(cat(p3, p2)))
|
||||
for(p2 = p1 + 2; p2 < N && !found; p2 += 2)
|
||||
{
|
||||
/* If p2 is not prime, or at least one of the possible concatenations of
|
||||
* p1 and p2 is not prime, go to the next number.*/
|
||||
if(!primes[p2] || !is_prime(cat(p1, p2)) || !is_prime(cat(p2, p1)))
|
||||
{
|
||||
continue;
|
||||
continue;
|
||||
}
|
||||
|
||||
for(p4 = p3 + 2; p4 < N && !found; p4 += 2)
|
||||
|
||||
for(p3 = p2 + 2; p3 < N && !found; p3 += 2)
|
||||
{
|
||||
/* If p4 is not prime, or at least one of the possible concatenations of
|
||||
* p1, p2, p3 and p4 is not prime, go to the next number.*/
|
||||
if(!primes[p4] || !is_prime(cat(p1, p4)) || !is_prime(cat(p4, p1)) ||
|
||||
!is_prime(cat(p2, p4)) || !is_prime(cat(p4, p2)) ||
|
||||
!is_prime(cat(p3, p4)) || !is_prime(cat(p4, p3)))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
/* If p3 is not prime, or at least one of the possible concatenations of
|
||||
* p1, p2 and p3 is not prime, go to the next number.*/
|
||||
if(!primes[p3] || !is_prime(cat(p1, p3)) || !is_prime(cat(p3, p1)) ||
|
||||
!is_prime(cat(p2, p3)) || !is_prime(cat(p3, p2)))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
for(p5 = p4 + 2; p5 < N && !found; p5 += 2)
|
||||
{
|
||||
/* If p5 is not prime, or at least one of the possible concatenations of
|
||||
* p1, p2, p3, p4 and p5 is not prime, go to the next number.*/
|
||||
if(!primes[p5] || !is_prime(cat(p1, p5)) || !is_prime(cat(p5, p1)) ||
|
||||
!is_prime(cat(p2, p5)) || !is_prime(cat(p5, p2)) ||
|
||||
!is_prime(cat(p3, p5)) || !is_prime(cat(p5, p3)) ||
|
||||
!is_prime(cat(p4, p5)) || !is_prime(cat(p5, p4)))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for(p4 = p3 + 2; p4 < N && !found; p4 += 2)
|
||||
{
|
||||
/* If p4 is not prime, or at least one of the possible concatenations of
|
||||
* p1, p2, p3 and p4 is not prime, go to the next number.*/
|
||||
if(!primes[p4] || !is_prime(cat(p1, p4)) || !is_prime(cat(p4, p1)) ||
|
||||
!is_prime(cat(p2, p4)) || !is_prime(cat(p4, p2)) ||
|
||||
!is_prime(cat(p3, p4)) || !is_prime(cat(p4, p3)))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* If it gets here, the five values have been found.*/
|
||||
n = p1 + p2 + p3 + p4 + p5;
|
||||
found = 1;
|
||||
}
|
||||
for(p5 = p4 + 2; p5 < N && !found; p5 += 2)
|
||||
{
|
||||
/* If p5 is not prime, or at least one of the possible concatenations of
|
||||
* p1, p2, p3, p4 and p5 is not prime, go to the next number.*/
|
||||
if(!primes[p5] || !is_prime(cat(p1, p5)) || !is_prime(cat(p5, p1)) ||
|
||||
!is_prime(cat(p2, p5)) || !is_prime(cat(p5, p2)) ||
|
||||
!is_prime(cat(p3, p5)) || !is_prime(cat(p5, p3)) ||
|
||||
!is_prime(cat(p4, p5)) || !is_prime(cat(p5, p4)))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* If it gets here, the five values have been found.*/
|
||||
n = p1 + p2 + p3 + p4 + p5;
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(primes);
|
||||
free(primes);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed=(end.tv_sec-start.tv_sec)+(double)(end.tv_nsec-start.tv_nsec)/1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 60\n");
|
||||
printf("Answer: %d\n", n);
|
||||
elapsed=(end.tv_sec-start.tv_sec)+(double)(end.tv_nsec-start.tv_nsec)/1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 60\n");
|
||||
printf("Answer: %d\n", n);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cat(int i, int j)
|
||||
{
|
||||
char n[10];
|
||||
char n[10];
|
||||
|
||||
sprintf(n, "%d%d", i, j);
|
||||
sprintf(n, "%d%d", i, j);
|
||||
|
||||
return atoi(n);
|
||||
return atoi(n);
|
||||
}
|
||||
|
258
C/p061.c
258
C/p061.c
@ -17,6 +17,8 @@
|
||||
* Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal,
|
||||
* hexagonal, heptagonal, and octagonal, is represented by a different number in the set.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -28,94 +30,94 @@ int chain[6], flags[6] = {0};
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, n, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, n, sum = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
i = 1;
|
||||
n = 1;
|
||||
i = 1;
|
||||
n = 1;
|
||||
|
||||
/* Generate all triangle numbers smaller than 10000*/
|
||||
do
|
||||
{
|
||||
polygonal[0][n] = 1;
|
||||
i++;
|
||||
n = i * (i + 1) / 2;
|
||||
}while(n < 10000);
|
||||
/* Generate all triangle numbers smaller than 10000*/
|
||||
do
|
||||
{
|
||||
polygonal[0][n] = 1;
|
||||
i++;
|
||||
n = i * (i + 1) / 2;
|
||||
} while(n < 10000);
|
||||
|
||||
i = 1;
|
||||
n = 1;
|
||||
i = 1;
|
||||
n = 1;
|
||||
|
||||
/* Generate all square numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[1][n] = 1;
|
||||
i++;
|
||||
n = i * i;
|
||||
}while(n < 10000);
|
||||
/* Generate all square numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[1][n] = 1;
|
||||
i++;
|
||||
n = i * i;
|
||||
} while(n < 10000);
|
||||
|
||||
i = 1;
|
||||
n = 1;
|
||||
i = 1;
|
||||
n = 1;
|
||||
|
||||
/* Generate all pentagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[2][n] = 1;
|
||||
i++;
|
||||
n = i * (3 * i - 1) / 2;
|
||||
}while(n < 10000);
|
||||
/* Generate all pentagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[2][n] = 1;
|
||||
i++;
|
||||
n = i * (3 * i - 1) / 2;
|
||||
} while(n < 10000);
|
||||
|
||||
i = 1;
|
||||
n = 1;
|
||||
i = 1;
|
||||
n = 1;
|
||||
|
||||
/* Generate all hexagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[3][n] = 1;
|
||||
i++;
|
||||
n = i * (2 * i - 1);
|
||||
}while(n < 10000);
|
||||
/* Generate all hexagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[3][n] = 1;
|
||||
i++;
|
||||
n = i * (2 * i - 1);
|
||||
} while(n < 10000);
|
||||
|
||||
i = 1;
|
||||
n = 1;
|
||||
i = 1;
|
||||
n = 1;
|
||||
|
||||
/* Generate all heptagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[4][n] = 1;
|
||||
i++;
|
||||
n = i * (5 * i - 3) / 2;
|
||||
}while(n < 10000);
|
||||
/* Generate all heptagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[4][n] = 1;
|
||||
i++;
|
||||
n = i * (5 * i - 3) / 2;
|
||||
} while(n < 10000);
|
||||
|
||||
i = 1;
|
||||
n = 1;
|
||||
i = 1;
|
||||
n = 1;
|
||||
|
||||
/* Generate all octagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[5][n] = 1;
|
||||
i++;
|
||||
n = i * (3 * i - 2);
|
||||
}while(n < 10000);
|
||||
/* Generate all octagonal numbers smaller than 10000.*/
|
||||
do
|
||||
{
|
||||
polygonal[5][n] = 1;
|
||||
i++;
|
||||
n = i * (3 * i - 2);
|
||||
} while(n < 10000);
|
||||
|
||||
/* Find the requested set of numbers.*/
|
||||
if(find_set(0, &sum) == 0)
|
||||
{
|
||||
printf("Set not found\n");
|
||||
}
|
||||
/* Find the requested set of numbers.*/
|
||||
if(find_set(0, &sum) == 0)
|
||||
{
|
||||
printf("Set not found\n");
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 61\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 61\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Recursive function to find the required set. It finds a polygonal number,
|
||||
@ -124,72 +126,72 @@ int main(int argc, char **argv)
|
||||
* backtracking and tries the next polygonal number.*/
|
||||
int find_set(int step, int *sum)
|
||||
{
|
||||
int i, j;
|
||||
int i, j;
|
||||
|
||||
/* Use one polygonal number per type, starting from triangular.*/
|
||||
for(i = 0; i < 6; i++)
|
||||
{
|
||||
/* If the current type has not been used yet, try it.*/
|
||||
if(!flags[i])
|
||||
{
|
||||
/* Set a flag to record that the current polygonal type has been used.*/
|
||||
flags[i] = 1;
|
||||
/* Use one polygonal number per type, starting from triangular.*/
|
||||
for(i = 0; i < 6; i++)
|
||||
{
|
||||
/* If the current type has not been used yet, try it.*/
|
||||
if(!flags[i])
|
||||
{
|
||||
/* Set a flag to record that the current polygonal type has been used.*/
|
||||
flags[i] = 1;
|
||||
|
||||
/* Start from 1010 because numbers finishing with 00, 01, ..., 09 can't
|
||||
* be part of the chain.*/
|
||||
for(j = 1010; j < 10000; j++)
|
||||
{
|
||||
/* If the number doesn't finish with 00, 01, ..., 09 and is poligonal,
|
||||
* try adding it to the chain and add its value to the total sum.*/
|
||||
if(j % 100 > 9 && polygonal[i][j])
|
||||
/* Start from 1010 because numbers finishing with 00, 01, ..., 09 can't
|
||||
* be part of the chain.*/
|
||||
for(j = 1010; j < 10000; j++)
|
||||
{
|
||||
/* If it's the first number, just add it as first step in the chain.*/
|
||||
if(step == 0)
|
||||
{
|
||||
chain[step] = j;
|
||||
*sum += j;
|
||||
/* If the number doesn't finish with 00, 01, ..., 09 and is poligonal,
|
||||
* try adding it to the chain and add its value to the total sum.*/
|
||||
if(j % 100 > 9 && polygonal[i][j])
|
||||
{
|
||||
/* If it's the first number, just add it as first step in the chain.*/
|
||||
if(step == 0)
|
||||
{
|
||||
chain[step] = j;
|
||||
*sum += j;
|
||||
|
||||
/* Recursively try to add other numbers to the chain. If a solution
|
||||
* is found, return 1.*/
|
||||
if(find_set(step+1, sum))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
/* Recursively try to add other numbers to the chain. If a solution
|
||||
* is found, return 1.*/
|
||||
if(find_set(step+1, sum))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* If a solution was not found, backtrack, subtracting the value of
|
||||
* the number from the total.*/
|
||||
*sum -= j;
|
||||
}
|
||||
/* If this is the last step and the current number can be added to the chain,
|
||||
* add it, update the sum and return 1. A solution has been found.*/
|
||||
else if(step == 5 && j % 100 == chain[0] / 100 && j / 100 == chain[step-1] % 100)
|
||||
{
|
||||
chain[step] = j;
|
||||
*sum += j;
|
||||
return 1;
|
||||
}
|
||||
/* For every other step, add the number to the chain if possible, then recursively
|
||||
* try to add other numbers.*/
|
||||
else if(step < 5 && j / 100 == chain[step-1] % 100)
|
||||
{
|
||||
chain[step] = j;
|
||||
*sum += j;
|
||||
/* If a solution was not found, backtrack, subtracting the value of
|
||||
* the number from the total.*/
|
||||
*sum -= j;
|
||||
}
|
||||
/* If this is the last step and the current number can be added to the chain,
|
||||
* add it, update the sum and return 1. A solution has been found.*/
|
||||
else if(step == 5 && j % 100 == chain[0] / 100 && j / 100 == chain[step-1] % 100)
|
||||
{
|
||||
chain[step] = j;
|
||||
*sum += j;
|
||||
return 1;
|
||||
}
|
||||
/* For every other step, add the number to the chain if possible, then recursively
|
||||
* try to add other numbers.*/
|
||||
else if(step < 5 && j / 100 == chain[step-1] % 100)
|
||||
{
|
||||
chain[step] = j;
|
||||
*sum += j;
|
||||
|
||||
if(find_set(step+1, sum))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
if(find_set(step+1, sum))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* If a solution was not found, backtrack.*/
|
||||
*sum -= j;
|
||||
}
|
||||
/* If a solution was not found, backtrack.*/
|
||||
*sum -= j;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Remove the flag for the current polygonal type.*/
|
||||
flags[i] = 0;
|
||||
}
|
||||
}
|
||||
/* Remove the flag for the current polygonal type.*/
|
||||
flags[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
152
C/p062.c
152
C/p062.c
@ -1,8 +1,10 @@
|
||||
/* The cube, 41063625 (345^3), can be permuted to produce two other cubes: 56623104 (384^3) and 66430125 (405^3).
|
||||
/* The cube, 41063625 (345^3), can be permuted to produce two other cubes: 56623104 (384^3) and 66430125 (405^3).
|
||||
* In fact, 41063625 is the smallest cube which has exactly three permutations of its digits which are also cube.
|
||||
*
|
||||
* Find the smallest cube for which exactly five permutations of its digits are cube.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -14,104 +16,104 @@ int count_digits(long int a);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int count;
|
||||
long int i, j, cubes[N];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int count;
|
||||
long int i, j, cubes[N];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Calculate i^3 for all i smaller than 10000.*/
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
cubes[i] = i * i * i;
|
||||
}
|
||||
/* Calculate i^3 for all i smaller than 10000.*/
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
cubes[i] = i * i * i;
|
||||
}
|
||||
|
||||
/* For each cube, check if there are four other cubes which are also
|
||||
* a permutation of the first cube.*/
|
||||
for(i = 0; i < N - 5; i++)
|
||||
{
|
||||
count = 1;
|
||||
/* For each cube, check if there are four other cubes which are also
|
||||
* a permutation of the first cube.*/
|
||||
for(i = 0; i < N - 5; i++)
|
||||
{
|
||||
count = 1;
|
||||
|
||||
/* Stop when the limit has been reached, when 5 values have been found or
|
||||
* when j^3 has more digits than i^3 (if they don't have the same digits,
|
||||
* they can't be permutations).*/
|
||||
for(j = i + 1; j < N && count_digits(cubes[j]) == count_digits(cubes[i]); j++)
|
||||
{
|
||||
if(is_permutation(cubes[i], cubes[j]))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
/* Stop when the limit has been reached, when 5 values have been found or
|
||||
* when j^3 has more digits than i^3 (if they don't have the same digits,
|
||||
* they can't be permutations).*/
|
||||
for(j = i + 1; j < N && count_digits(cubes[j]) == count_digits(cubes[i]); j++)
|
||||
{
|
||||
if(is_permutation(cubes[i], cubes[j]))
|
||||
{
|
||||
count++;
|
||||
}
|
||||
|
||||
if(count == 5)
|
||||
{
|
||||
if(count == 5)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(count == 5)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(count == 5)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
printf("Project Euler, Problem 62\n");
|
||||
printf("Answer: %ld\n", cubes[i]);
|
||||
|
||||
printf("Project Euler, Problem 62\n");
|
||||
printf("Answer: %ld\n", cubes[i]);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count_digits(long int a)
|
||||
{
|
||||
int count = 0;
|
||||
int count = 0;
|
||||
|
||||
if(a == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
if(a == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
while(a > 0)
|
||||
{
|
||||
count++;
|
||||
a /= 10;
|
||||
}
|
||||
while(a > 0)
|
||||
{
|
||||
count++;
|
||||
a /= 10;
|
||||
}
|
||||
|
||||
return count;
|
||||
return count;
|
||||
}
|
||||
|
||||
int is_permutation(long int a, long int b)
|
||||
{
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
94
C/p063.c
94
C/p063.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* How many n-digit positive integers exist which are also an nth power?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -12,70 +14,70 @@ int count_digits(mpz_t n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, count = 0, finished = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t p;
|
||||
int i, j, count = 0, finished = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t p;
|
||||
|
||||
mpz_init(p);
|
||||
mpz_init(p);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
i = 1;
|
||||
i = 1;
|
||||
|
||||
while(!finished)
|
||||
{
|
||||
/* When j=10, j^i will have i+1 digits (e.g if i=3, 10^3=1000).*/
|
||||
for(j = 1; j < 10; j++)
|
||||
{
|
||||
mpz_ui_pow_ui(p, j, i);
|
||||
while(!finished)
|
||||
{
|
||||
/* When j=10, j^i will have i+1 digits (e.g if i=3, 10^3=1000).*/
|
||||
for(j = 1; j < 10; j++)
|
||||
{
|
||||
mpz_ui_pow_ui(p, j, i);
|
||||
|
||||
if(count_digits(p) == i)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
if(count_digits(p) == i)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
/* When 9^i has less than i digits, all the numbers have been found.*/
|
||||
if(count_digits(p) < i)
|
||||
{
|
||||
finished = 1;
|
||||
}
|
||||
/* When 9^i has less than i digits, all the numbers have been found.*/
|
||||
if(count_digits(p) < i)
|
||||
{
|
||||
finished = 1;
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
mpz_clear(p);
|
||||
mpz_clear(p);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 63\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 63\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count_digits(mpz_t n)
|
||||
{
|
||||
int count = 0;
|
||||
mpz_t tmp;
|
||||
int count = 0;
|
||||
mpz_t tmp;
|
||||
|
||||
if(mpz_cmp_ui(n, 0) == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
if(mpz_cmp_ui(n, 0) == 0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
mpz_init_set(tmp, n);
|
||||
mpz_init_set(tmp, n);
|
||||
|
||||
while(mpz_cmp_ui(tmp, 0))
|
||||
{
|
||||
mpz_tdiv_q_ui(tmp, tmp, 10);
|
||||
count++;
|
||||
}
|
||||
while(mpz_cmp_ui(tmp, 0))
|
||||
{
|
||||
mpz_tdiv_q_ui(tmp, tmp, 10);
|
||||
count++;
|
||||
}
|
||||
|
||||
return count;
|
||||
return count;
|
||||
}
|
||||
|
84
C/p064.c
84
C/p064.c
@ -40,6 +40,8 @@
|
||||
*
|
||||
* How many continued fractions for N≤10000 have an odd period?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -50,60 +52,60 @@ int is_square(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count = 0, period;
|
||||
int *fraction;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, count = 0, period;
|
||||
int *fraction;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 2; i <= 10000; i++)
|
||||
{
|
||||
/* Perfect squares are obviously not represented as continued fractions.
|
||||
* For all other numbers, calculate their period and check if it's odd.*/
|
||||
if(!is_square(i))
|
||||
{
|
||||
if((fraction = build_sqrt_cont_fraction(i, &period, 300)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Build_cont_fraction function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
for(i = 2; i <= 10000; i++)
|
||||
{
|
||||
/* Perfect squares are obviously not represented as continued fractions.
|
||||
* For all other numbers, calculate their period and check if it's odd.*/
|
||||
if(!is_square(i))
|
||||
{
|
||||
if((fraction = build_sqrt_cont_fraction(i, &period, 300)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Build_cont_fraction function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(period % 2 != 0)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(period % 2 != 0)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(fraction);
|
||||
free(fraction);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 64\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 64\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_square(int n)
|
||||
{
|
||||
int m;
|
||||
double p;
|
||||
int m;
|
||||
double p;
|
||||
|
||||
p = sqrt(n);
|
||||
m = p;
|
||||
p = sqrt(n);
|
||||
m = p;
|
||||
|
||||
if(p == m)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(p == m)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
82
C/p065.c
82
C/p065.c
@ -27,6 +27,8 @@
|
||||
*
|
||||
* Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -34,55 +36,55 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, ai[3] = {1, 2, 1}, count = 4, sum = 0;
|
||||
mpz_t n0, n1, n2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, ai[3] = {1, 2, 1}, count = 4, sum = 0;
|
||||
mpz_t n0, n1, n2;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init_set_ui(n0, 3);
|
||||
mpz_init_set_ui(n1, 8);
|
||||
mpz_init_set_ui(n2, 11);
|
||||
mpz_init_set_ui(n0, 3);
|
||||
mpz_init_set_ui(n1, 8);
|
||||
mpz_init_set_ui(n2, 11);
|
||||
|
||||
/* For a continued fractions [a_0; a_1, a_2, ...], the numerator of the
|
||||
* next convergent N_n=a_n*N_(n-1)+N_(n-2). The first three values for e are
|
||||
* 3, 8 and 11, the next ones are easily calculated, considering that a_n
|
||||
* follows a simple pattern:
|
||||
* a_1=1, a_2=2, a_3=1
|
||||
* a_4=1, a_5=4, a_6=1
|
||||
* a_7=1, a_8=6, a_9=1
|
||||
* and so on.*/
|
||||
while(count < 100)
|
||||
{
|
||||
ai[1] += 2;
|
||||
/* For a continued fractions [a_0; a_1, a_2, ...], the numerator of the
|
||||
* next convergent N_n=a_n*N_(n-1)+N_(n-2). The first three values for e are
|
||||
* 3, 8 and 11, the next ones are easily calculated, considering that a_n
|
||||
* follows a simple pattern:
|
||||
* a_1=1, a_2=2, a_3=1
|
||||
* a_4=1, a_5=4, a_6=1
|
||||
* a_7=1, a_8=6, a_9=1
|
||||
* and so on.*/
|
||||
while(count < 100)
|
||||
{
|
||||
ai[1] += 2;
|
||||
|
||||
for(i = 0; i < 3 && count < 100; i++)
|
||||
{
|
||||
mpz_set(n0, n1);
|
||||
mpz_set(n1, n2);
|
||||
mpz_mul_ui(n2, n1, ai[i]);
|
||||
mpz_add(n2, n2, n0);
|
||||
count++;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 3 && count < 100; i++)
|
||||
{
|
||||
mpz_set(n0, n1);
|
||||
mpz_set(n1, n2);
|
||||
mpz_mul_ui(n2, n1, ai[i]);
|
||||
mpz_add(n2, n2, n0);
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Sum the digits.*/
|
||||
while(mpz_cmp_ui(n2, 0))
|
||||
{
|
||||
sum += mpz_tdiv_q_ui(n2, n2, 10);
|
||||
}
|
||||
/* Sum the digits.*/
|
||||
while(mpz_cmp_ui(n2, 0))
|
||||
{
|
||||
sum += mpz_tdiv_q_ui(n2, n2, 10);
|
||||
}
|
||||
|
||||
mpz_clears(n0, n1, n2, NULL);
|
||||
mpz_clears(n0, n1, n2, NULL);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 65\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
printf("Project Euler, Problem 65\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
93
C/p066.c
93
C/p066.c
@ -18,6 +18,8 @@
|
||||
*
|
||||
* Find the value of D ≤ 1000 in minimal solutions of x for which the largest value of x is obtained.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -29,64 +31,63 @@ int is_square(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, max_d = -1;
|
||||
mpz_t x, max;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
int i, max_d = -1;
|
||||
mpz_t x, max;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
// mpz_init(x);
|
||||
mpz_init_set_ui(max, 0);
|
||||
mpz_init_set_ui(max, 0);
|
||||
|
||||
for(i = 2; i <= 1000; i++)
|
||||
{
|
||||
if(!is_square(i))
|
||||
{
|
||||
/* Solve the Diophantine equation x^2-D*y^2=1 (Pell equation)*/
|
||||
if(pell_eq(i, x) == -1)
|
||||
{
|
||||
fprintf(stderr, "Error! Pell_eq function failed\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(mpz_cmp(x, max) > 0)
|
||||
{
|
||||
mpz_set(max, x);
|
||||
max_d = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
for(i = 2; i <= 1000; i++)
|
||||
{
|
||||
if(!is_square(i))
|
||||
{
|
||||
/* Solve the Diophantine equation x^2-D*y^2=1 (Pell equation)*/
|
||||
if(pell_eq(i, x) == -1)
|
||||
{
|
||||
fprintf(stderr, "Error! Pell_eq function failed\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
mpz_clears(x, max, NULL);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(mpz_cmp(x, max) > 0)
|
||||
{
|
||||
mpz_set(max, x);
|
||||
max_d = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
mpz_clears(x, max, NULL);
|
||||
|
||||
printf("Project Euler, Problem 66\n");
|
||||
printf("Answer: %d\n", max_d);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
return 0;
|
||||
printf("Project Euler, Problem 66\n");
|
||||
printf("Answer: %d\n", max_d);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_square(int n)
|
||||
{
|
||||
int m;
|
||||
double p;
|
||||
int m;
|
||||
double p;
|
||||
|
||||
p = sqrt(n);
|
||||
m = p;
|
||||
p = sqrt(n);
|
||||
m = p;
|
||||
|
||||
if(p == m)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(p == m)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
92
C/p067.c
92
C/p067.c
@ -13,6 +13,8 @@
|
||||
* If you could check one trillion (1012) routes every second it would take over twenty billion years to check them all.
|
||||
* There is an efficient algorithm to solve it. ;o)*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -20,63 +22,63 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, max;
|
||||
int **triang;
|
||||
double elapsed;
|
||||
FILE *fp;
|
||||
struct timespec start, end;
|
||||
int i, j, max;
|
||||
int **triang;
|
||||
double elapsed;
|
||||
FILE *fp;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((triang = (int **)malloc(100*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((triang = (int **)malloc(100*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 1; i <= 100; i++)
|
||||
{
|
||||
if((triang[i-1] = (int *)malloc(i*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 1; i <= 100; i++)
|
||||
{
|
||||
if((triang[i-1] = (int *)malloc(i*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if((fp = fopen("triangle.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "triangle.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("triangle.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "triangle.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 1; i <= 100; i++)
|
||||
{
|
||||
for(j = 0; j < i; j++)
|
||||
{
|
||||
fscanf(fp, "%d", &triang[i-1][j]);
|
||||
}
|
||||
}
|
||||
for(i = 1; i <= 100; i++)
|
||||
{
|
||||
for(j = 0; j < i; j++)
|
||||
{
|
||||
fscanf(fp, "%d", &triang[i-1][j]);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
/* Use the function implemented in projecteuler.c to find the maximum path.*/
|
||||
max = find_max_path(triang, 100);
|
||||
/* Use the function implemented in projecteuler.c to find the maximum path.*/
|
||||
max = find_max_path(triang, 100);
|
||||
|
||||
for(i = 0; i < 100; i++)
|
||||
{
|
||||
free(triang[i]);
|
||||
}
|
||||
for(i = 0; i < 100; i++)
|
||||
{
|
||||
free(triang[i]);
|
||||
}
|
||||
|
||||
free(triang);
|
||||
free(triang);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 67\n");
|
||||
printf("Answer: %d\n", max);
|
||||
printf("Project Euler, Problem 67\n");
|
||||
printf("Answer: %d\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
232
C/p068.c
232
C/p068.c
@ -43,6 +43,8 @@
|
||||
* O
|
||||
*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -56,79 +58,79 @@ int compare(void *a, void *b);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
int *eval, **ring;
|
||||
long int n, max = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i;
|
||||
int *eval, **ring;
|
||||
long int n, max = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((ring = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((ring = (int **)malloc(10*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((ring[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
*ring[i] = i + 1;
|
||||
}
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if((ring[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
*ring[i] = i + 1;
|
||||
}
|
||||
|
||||
/* Check if the first permutation of values is a possible solution.*/
|
||||
eval = eval_ring(ring, 5);
|
||||
/* Check if the first permutation of values is a possible solution.*/
|
||||
eval = eval_ring(ring, 5);
|
||||
|
||||
/* Convert the vector into an integer number.*/
|
||||
n = array_to_long(eval, 15);
|
||||
/* Convert the vector into an integer number.*/
|
||||
n = array_to_long(eval, 15);
|
||||
|
||||
if(n > max)
|
||||
{
|
||||
max = n;
|
||||
}
|
||||
|
||||
free(eval);
|
||||
if(n > max)
|
||||
{
|
||||
max = n;
|
||||
}
|
||||
|
||||
/* Generate all possible permutations, for each one check if
|
||||
* it's a possible solution for the ring and save the maximum.*/
|
||||
while(next_permutation((void **)ring, 10, compare) != -1)
|
||||
{
|
||||
eval = eval_ring(ring, 5);
|
||||
free(eval);
|
||||
|
||||
n = array_to_long(eval, 15);
|
||||
/* Generate all possible permutations, for each one check if
|
||||
* it's a possible solution for the ring and save the maximum.*/
|
||||
while(next_permutation((void **)ring, 10, compare) != -1)
|
||||
{
|
||||
eval = eval_ring(ring, 5);
|
||||
|
||||
if(n > max)
|
||||
{
|
||||
max = n;
|
||||
}
|
||||
|
||||
free(eval);
|
||||
}
|
||||
n = array_to_long(eval, 15);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(n > max)
|
||||
{
|
||||
max = n;
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
free(eval);
|
||||
}
|
||||
|
||||
printf("Project Euler, Problem 68\n");
|
||||
printf("Answer: %ld\n", max);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
return 0;
|
||||
printf("Project Euler, Problem 68\n");
|
||||
printf("Answer: %ld\n", max);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compare(void *a, void *b)
|
||||
{
|
||||
int *n1, *n2;
|
||||
int *n1, *n2;
|
||||
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
|
||||
return *n1 - *n2;
|
||||
return *n1 - *n2;
|
||||
}
|
||||
|
||||
/* Function to evaluate the ring. The ring is represented as a vector of 2*n elements,
|
||||
@ -136,82 +138,82 @@ int compare(void *a, void *b)
|
||||
* represent the internal ring.*/
|
||||
int *eval_ring(int **ring, int n)
|
||||
{
|
||||
int i, j, magic_val, val;
|
||||
int *res;
|
||||
int i, j, magic_val, val;
|
||||
int *res;
|
||||
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
/* We need to start from the lowest external node, so if
|
||||
* the first element in the vector is not the lowest of
|
||||
* the first n elements (the external elements), the configuration
|
||||
* is not a valid one.*/
|
||||
if(*ring[i] < *ring[0])
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
if((res = (int *)malloc(3*n*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return NULL;
|
||||
}
|
||||
for(i = 1; i < n; i++)
|
||||
{
|
||||
/* We need to start from the lowest external node, so if
|
||||
* the first element in the vector is not the lowest of
|
||||
* the first n elements (the external elements), the configuration
|
||||
* is not a valid one.*/
|
||||
if(*ring[i] < *ring[0])
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Each group of three must have the same value.*/
|
||||
magic_val = *ring[0] + *ring[n] + *ring[n+1];
|
||||
if((res = (int *)malloc(3*n*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for(i = 0, j = 0; i < n; i++, j += 3)
|
||||
{
|
||||
/* We need to find the maximum 16-digit string, this is
|
||||
* possible only if the element "10" is used only once,
|
||||
* i.e. if it's one of the external nodes.*/
|
||||
if(*ring[n+i] == 10 || *ring[n+(i+1)%n] == 10)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
/* Each group of three must have the same value.*/
|
||||
magic_val = *ring[0] + *ring[n] + *ring[n+1];
|
||||
|
||||
/* Check that the value of the current three-element group
|
||||
* is the "magic" value.*/
|
||||
val = *ring[i] + *ring[n+i] + *ring[n+(i+1)%n];
|
||||
for(i = 0, j = 0; i < n; i++, j += 3)
|
||||
{
|
||||
/* We need to find the maximum 16-digit string, this is
|
||||
* possible only if the element "10" is used only once,
|
||||
* i.e. if it's one of the external nodes.*/
|
||||
if(*ring[n+i] == 10 || *ring[n+(i+1)%n] == 10)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(val != magic_val)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
/* Check that the value of the current three-element group
|
||||
* is the "magic" value.*/
|
||||
val = *ring[i] + *ring[n+i] + *ring[n+(i+1)%n];
|
||||
|
||||
/* Save the current element group in the result string.*/
|
||||
res[j] = *ring[i];
|
||||
res[j+1] = *ring[n+i];
|
||||
res[j+2] = *ring[n+(i+1)%n];
|
||||
}
|
||||
if(val != magic_val)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return res;
|
||||
/* Save the current element group in the result string.*/
|
||||
res[j] = *ring[i];
|
||||
res[j+1] = *ring[n+i];
|
||||
res[j+2] = *ring[n+(i+1)%n];
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Function to convert the vector into a long int.*/
|
||||
long int array_to_long(int *n, int len)
|
||||
{
|
||||
int i, k = 0;
|
||||
long int res = 0;
|
||||
int i, k = 0;
|
||||
long int res = 0;
|
||||
|
||||
if(n == NULL)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(n == NULL)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
for(i = len - 1; i >= 0; i--)
|
||||
{
|
||||
res += n[i] * pow(10, k);
|
||||
for(i = len - 1; i >= 0; i--)
|
||||
{
|
||||
res += n[i] * pow(10, k);
|
||||
|
||||
if(n[i] >= 10)
|
||||
{
|
||||
k += 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
k++;
|
||||
}
|
||||
}
|
||||
if(n[i] >= 10)
|
||||
{
|
||||
k += 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
return res;
|
||||
}
|
||||
|
10
C/p069.c
10
C/p069.c
@ -16,6 +16,8 @@
|
||||
*
|
||||
* Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -27,7 +29,7 @@
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, res = 1;
|
||||
double elapsed;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
@ -43,7 +45,7 @@ int main(int argc, char **argv)
|
||||
while(res < N)
|
||||
{
|
||||
i++;
|
||||
|
||||
|
||||
if(is_prime(i))
|
||||
{
|
||||
res *= i;
|
||||
@ -58,9 +60,9 @@ int main(int argc, char **argv)
|
||||
elapsed = (end.tv_sec-start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 69\n");
|
||||
printf("Answer: %d\n", res);
|
||||
printf("Answer: %d\n", res);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
116
C/p070.c
116
C/p070.c
@ -7,6 +7,8 @@
|
||||
*
|
||||
* Find the value of n, 1 < n < 10^7, for which φ(n) is a permutation of n and the ratio n/φ(n) produces a minimum.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -20,78 +22,78 @@ int is_permutation(int a, int b);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, a, b, p, n = -1;
|
||||
int *primes;
|
||||
double elapsed, min = DBL_MAX;
|
||||
struct timespec start, end;
|
||||
int i, a, b, p, n = -1;
|
||||
int *primes;
|
||||
double elapsed, min = DBL_MAX;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 2; i < N; i++)
|
||||
{
|
||||
/* When n is prime, phi(n)=(n-1), so to minimize n/phi(n) we should
|
||||
* use n prime. But n-1 can't be a permutation of n. The second best
|
||||
* bet is to use semiprimes. For a semiprime n=p*q, phi(n)=(p-1)(q-1).
|
||||
* So we check if a number is semiprime, if yes calculate phi, finally
|
||||
* check if phi(n) is a permutation of n and update the minimum if it's
|
||||
* smaller.*/
|
||||
if(is_semiprime(i, &a, &b, primes))
|
||||
{
|
||||
p = phi_semiprime(i, a, b);
|
||||
for(i = 2; i < N; i++)
|
||||
{
|
||||
/* When n is prime, phi(n)=(n-1), so to minimize n/phi(n) we should
|
||||
* use n prime. But n-1 can't be a permutation of n. The second best
|
||||
* bet is to use semiprimes. For a semiprime n=p*q, phi(n)=(p-1)(q-1).
|
||||
* So we check if a number is semiprime, if yes calculate phi, finally
|
||||
* check if phi(n) is a permutation of n and update the minimum if it's
|
||||
* smaller.*/
|
||||
if(is_semiprime(i, &a, &b, primes))
|
||||
{
|
||||
p = phi_semiprime(i, a, b);
|
||||
|
||||
if(is_permutation(p, i) && (double)i / p < min)
|
||||
{
|
||||
n = i;
|
||||
min = (double)i / p;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(is_permutation(p, i) && (double)i / p < min)
|
||||
{
|
||||
n = i;
|
||||
min = (double)i / p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 70\n");
|
||||
printf("Answer: %d\n", n);
|
||||
printf("Project Euler, Problem 70\n");
|
||||
printf("Answer: %d\n", n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_permutation(int a, int b)
|
||||
{
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
int i;
|
||||
int digits1[10] = {0}, digits2[10] = {0};
|
||||
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
/* Get digits of a.*/
|
||||
while(a > 0)
|
||||
{
|
||||
digits1[a%10]++;
|
||||
a /= 10;
|
||||
}
|
||||
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
/* Get digits of b.*/
|
||||
while(b > 0)
|
||||
{
|
||||
digits2[b%10]++;
|
||||
b /= 10;
|
||||
}
|
||||
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/* If they're not the same, return 0.*/
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
if(digits1[i] != digits2[i])
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
68
C/p071.c
68
C/p071.c
@ -9,6 +9,8 @@
|
||||
* By listing the set of reduced proper fractions for d ≤ 1,000,000 in ascending order of size, find the numerator
|
||||
* of the fraction immediately to the left of 3/7.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -18,47 +20,47 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, n, d, max_n;
|
||||
double elapsed, max = 0.0;
|
||||
struct timespec start, end;
|
||||
int i, j, n, d, max_n;
|
||||
double elapsed, max = 0.0;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* For each denominator q, we need to find the biggest numerator p for which
|
||||
* p/q<a/b, where a/b is 3/7 for this problem. So:
|
||||
* pb<aq
|
||||
* pb<=aq-1
|
||||
* p<=(aq-1)/b
|
||||
* So we can set p=(3*q-1)/7 (using integer division).*/
|
||||
for(i = 2; i <= N; i++)
|
||||
{
|
||||
j = (3 * i - 1) / 7;
|
||||
/* For each denominator q, we need to find the biggest numerator p for which
|
||||
* p/q<a/b, where a/b is 3/7 for this problem. So:
|
||||
* pb<aq
|
||||
* pb<=aq-1
|
||||
* p<=(aq-1)/b
|
||||
* So we can set p=(3*q-1)/7 (using integer division).*/
|
||||
for(i = 2; i <= N; i++)
|
||||
{
|
||||
j = (3 * i - 1) / 7;
|
||||
|
||||
if((double)j / i > max)
|
||||
{
|
||||
n = j;
|
||||
d = i;
|
||||
max = (double)n / d;
|
||||
if((double)j / i > max)
|
||||
{
|
||||
n = j;
|
||||
d = i;
|
||||
max = (double)n / d;
|
||||
|
||||
/* Reduce the fraction if it's not already reduced.*/
|
||||
if(gcd(i, j) > 1)
|
||||
{
|
||||
n /= gcd(i, j);
|
||||
d /= gcd(i, j);
|
||||
}
|
||||
/* Reduce the fraction if it's not already reduced.*/
|
||||
if(gcd(i, j) > 1)
|
||||
{
|
||||
n /= gcd(i, j);
|
||||
d /= gcd(i, j);
|
||||
}
|
||||
|
||||
max_n = n;
|
||||
}
|
||||
}
|
||||
max_n = n;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 71\n");
|
||||
printf("Answer: %d\n", max_n);
|
||||
printf("Project Euler, Problem 71\n");
|
||||
printf("Answer: %d\n", max_n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
54
C/p072.c
54
C/p072.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -18,37 +20,37 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
int *primes;
|
||||
long int count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i;
|
||||
int *primes;
|
||||
long int count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* For any denominator d, the number of reduced proper fractions is
|
||||
* the number of fractions n/d where gcd(n, d)=1, which is the definition
|
||||
* of Euler's Totient Function phi. It's sufficient to calculate phi for each
|
||||
* denominator and sum the value.*/
|
||||
for(i = 2; i < N; i++)
|
||||
{
|
||||
count += phi(i, primes);
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
/* For any denominator d, the number of reduced proper fractions is
|
||||
* the number of fractions n/d where gcd(n, d)=1, which is the definition
|
||||
* of Euler's Totient Function phi. It's sufficient to calculate phi for each
|
||||
* denominator and sum the value.*/
|
||||
for(i = 2; i < N; i++)
|
||||
{
|
||||
count += phi(i, primes);
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 72\n");
|
||||
printf("Answer: %ld\n", count);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 72\n");
|
||||
printf("Answer: %ld\n", count);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
54
C/p073.c
54
C/p073.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d ≤ 12,000?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -15,37 +17,37 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, limit, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, limit, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* For each denominator q, we need to find the fractions p/q for which
|
||||
* 1/3<p/q<1/2. For the lower limit, if p=q/3, then p/q=1/3, so we take
|
||||
* p=q/3+1. For the upper limit, if p=q/2 p/q=1/2, so we take p=(q-1)/2.*/
|
||||
for(i = 2; i <= 12000; i++)
|
||||
{
|
||||
limit = (i - 1) / 2;
|
||||
/* For each denominator q, we need to find the fractions p/q for which
|
||||
* 1/3<p/q<1/2. For the lower limit, if p=q/3, then p/q=1/3, so we take
|
||||
* p=q/3+1. For the upper limit, if p=q/2 p/q=1/2, so we take p=(q-1)/2.*/
|
||||
for(i = 2; i <= 12000; i++)
|
||||
{
|
||||
limit = (i - 1) / 2;
|
||||
|
||||
for(j = i / 3 + 1; j <= limit; j++)
|
||||
{
|
||||
/* Increment the counter if the current fraction is reduced.*/
|
||||
if(gcd(j, i) == 1)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
for(j = i / 3 + 1; j <= limit; j++)
|
||||
{
|
||||
/* Increment the counter if the current fraction is reduced.*/
|
||||
if(gcd(j, i) == 1)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 73\n");
|
||||
printf("Answer: %d\n", count);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 73\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
142
C/p074.c
142
C/p074.c
@ -20,6 +20,8 @@
|
||||
*
|
||||
* How many chains, with a starting number below one million, contain exactly sixty non-repeating terms?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -34,99 +36,99 @@ int chains[N] = {0};
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Simple brute force approach, for every number calculate
|
||||
* the length of the chain.*/
|
||||
for(i = 3; i < N; i++)
|
||||
{
|
||||
if(len_chain(i) == 60)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
/* Simple brute force approach, for every number calculate
|
||||
* the length of the chain.*/
|
||||
for(i = 3; i < N; i++)
|
||||
{
|
||||
if(len_chain(i) == 60)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 74\n");
|
||||
printf("Answer: %d\n", count);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 74\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Recursively calculate the factorial, of a number, saving the result
|
||||
* so that it can be reused later.*/
|
||||
int factorial(int n)
|
||||
{
|
||||
if(n == 0 || n == 1)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else if(factorials[n] != 0)
|
||||
{
|
||||
return factorials[n];
|
||||
}
|
||||
else
|
||||
{
|
||||
factorials[n]=n*factorial(n-1);
|
||||
return factorials[n];
|
||||
}
|
||||
if(n == 0 || n == 1)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else if(factorials[n] != 0)
|
||||
{
|
||||
return factorials[n];
|
||||
}
|
||||
else
|
||||
{
|
||||
factorials[n]=n*factorial(n-1);
|
||||
return factorials[n];
|
||||
}
|
||||
}
|
||||
|
||||
int len_chain(int n)
|
||||
{
|
||||
int i, count = 0, finished = 0, value, tmp;
|
||||
int chain[60];
|
||||
int i, count = 0, finished = 0, value, tmp;
|
||||
int chain[60];
|
||||
|
||||
value = n;
|
||||
chain[count] = value;
|
||||
value = n;
|
||||
chain[count] = value;
|
||||
|
||||
while(!finished)
|
||||
{
|
||||
tmp = 0;
|
||||
count++;
|
||||
while(!finished)
|
||||
{
|
||||
tmp = 0;
|
||||
count++;
|
||||
|
||||
/* Generate the next number of the chain by taking
|
||||
* the digits of the current value, calculating the
|
||||
* factorials and adding them.*/
|
||||
while(value != 0)
|
||||
{
|
||||
tmp += factorial(value % 10);
|
||||
value /= 10;
|
||||
}
|
||||
/* Generate the next number of the chain by taking
|
||||
* the digits of the current value, calculating the
|
||||
* factorials and adding them.*/
|
||||
while(value != 0)
|
||||
{
|
||||
tmp += factorial(value % 10);
|
||||
value /= 10;
|
||||
}
|
||||
|
||||
/* If the chain length for the new value has already been
|
||||
* calculated before, use the saved value (only chains for
|
||||
* values smaller than N are saved).*/
|
||||
if(tmp < N && chains[tmp] != 0)
|
||||
{
|
||||
return count + chains[tmp];
|
||||
}
|
||||
/* If the chain length for the new value has already been
|
||||
* calculated before, use the saved value (only chains for
|
||||
* values smaller than N are saved).*/
|
||||
if(tmp < N && chains[tmp] != 0)
|
||||
{
|
||||
return count + chains[tmp];
|
||||
}
|
||||
|
||||
value = tmp;
|
||||
value = tmp;
|
||||
|
||||
/* If the current value is already present in the chain,
|
||||
* the chain is finished.*/
|
||||
for(i = 0; i < count; i++)
|
||||
{
|
||||
if(chain[i] == value)
|
||||
{
|
||||
finished = 1;
|
||||
}
|
||||
}
|
||||
/* If the current value is already present in the chain,
|
||||
* the chain is finished.*/
|
||||
for(i = 0; i < count; i++)
|
||||
{
|
||||
if(chain[i] == value)
|
||||
{
|
||||
finished = 1;
|
||||
}
|
||||
}
|
||||
|
||||
chain[count] = value;
|
||||
}
|
||||
chain[count] = value;
|
||||
}
|
||||
|
||||
chains[n] = count;
|
||||
chains[n] = count;
|
||||
|
||||
return count;
|
||||
return count;
|
||||
}
|
||||
|
128
C/p075.c
128
C/p075.c
@ -15,6 +15,8 @@
|
||||
*
|
||||
* Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can exactly one integer sided right angle triangle be formed?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -24,79 +26,79 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, a, b, c, tmpa, tmpb, tmpc, m, n, count = 0;
|
||||
int *l;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, a, b, c, tmpa, tmpb, tmpc, m, n, count = 0;
|
||||
int *l;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((l = (int *)calloc(N + 1, sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((l = (int *)calloc(N + 1, sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Generate all Pythagorean triplets using Euclid's algorithm:
|
||||
* For m>=2 and n<m:
|
||||
* a=m*m-n*n
|
||||
* b=2*m*n
|
||||
* c=m*m+n*n
|
||||
* This gives a primitive triple if gcd(m, n)=1 and exactly one
|
||||
* of m and n is odd. To generate all the triples, generate all
|
||||
* the primitive one and multiply them by i=2,3, ..., n until the
|
||||
* perimeter is larger than the limit. The limit for m is 865, because
|
||||
* when m=866 even with the smaller n (i.e. 1) the perimeter is greater
|
||||
* than the given limit.*/
|
||||
for(m = 2; m < 866; m++)
|
||||
{
|
||||
for(n = 1; n < m; n++)
|
||||
{
|
||||
if(gcd(m, n) == 1 && ((m % 2 == 0 && n % 2 != 0) || (m % 2 != 0 && n % 2 == 0)))
|
||||
{
|
||||
a = m * m - n * n;
|
||||
b = 2 * m * n;
|
||||
c = m * m + n * n;
|
||||
|
||||
if(a + b + c <= N)
|
||||
/* Generate all Pythagorean triplets using Euclid's algorithm:
|
||||
* For m>=2 and n<m:
|
||||
* a=m*m-n*n
|
||||
* b=2*m*n
|
||||
* c=m*m+n*n
|
||||
* This gives a primitive triple if gcd(m, n)=1 and exactly one
|
||||
* of m and n is odd. To generate all the triples, generate all
|
||||
* the primitive one and multiply them by i=2,3, ..., n until the
|
||||
* perimeter is larger than the limit. The limit for m is 865, because
|
||||
* when m=866 even with the smaller n (i.e. 1) the perimeter is greater
|
||||
* than the given limit.*/
|
||||
for(m = 2; m < 866; m++)
|
||||
{
|
||||
for(n = 1; n < m; n++)
|
||||
{
|
||||
if(gcd(m, n) == 1 && ((m % 2 == 0 && n % 2 != 0) || (m % 2 != 0 && n % 2 == 0)))
|
||||
{
|
||||
l[a+b+c]++;
|
||||
a = m * m - n * n;
|
||||
b = 2 * m * n;
|
||||
c = m * m + n * n;
|
||||
|
||||
if(a + b + c <= N)
|
||||
{
|
||||
l[a+b+c]++;
|
||||
}
|
||||
|
||||
i = 2;
|
||||
tmpa = i * a;
|
||||
tmpb = i * b;
|
||||
tmpc = i * c;
|
||||
|
||||
while(tmpa + tmpb + tmpc <= N)
|
||||
{
|
||||
l[tmpa+tmpb+tmpc]++;
|
||||
|
||||
i++;
|
||||
tmpa = i * a;
|
||||
tmpb = i * b;
|
||||
tmpc = i * c;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
i = 2;
|
||||
tmpa = i * a;
|
||||
tmpb = i * b;
|
||||
tmpc = i * c;
|
||||
for(i = 0; i <= N; i++)
|
||||
{
|
||||
if(l[i] == 1)
|
||||
count++;
|
||||
}
|
||||
|
||||
while(tmpa + tmpb + tmpc <= N)
|
||||
{
|
||||
l[tmpa+tmpb+tmpc]++;
|
||||
free(l);
|
||||
|
||||
i++;
|
||||
tmpa = i * a;
|
||||
tmpb = i * b;
|
||||
tmpc = i * c;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
for(i = 0; i <= N; i++)
|
||||
{
|
||||
if(l[i] == 1)
|
||||
count++;
|
||||
}
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
free(l);
|
||||
printf("Project Euler, Problem 75\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 75\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
44
C/p076.c
44
C/p076.c
@ -9,6 +9,8 @@
|
||||
*
|
||||
* How many different ways can one hundred be written as a sum of at least two positive integers?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -16,34 +18,34 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int n;
|
||||
long int *partitions;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int n;
|
||||
long int *partitions;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((partitions = (long int *)calloc(100, sizeof(long int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((partitions = (long int *)calloc(100, sizeof(long int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* The number of ways a number can be written as a sum is given by the partition function
|
||||
* (-1 because the partition function includes also the number itself).
|
||||
* The function is implemented in projecteuler.c*/
|
||||
n = partition_fn(100, partitions, -1) - 1;
|
||||
/* The number of ways a number can be written as a sum is given by the partition function
|
||||
* (-1 because the partition function includes also the number itself).
|
||||
* The function is implemented in projecteuler.c*/
|
||||
n = partition_fn(100, partitions, -1) - 1;
|
||||
|
||||
free(partitions);
|
||||
free(partitions);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 76\n");
|
||||
printf("Answer: %d\n", n);
|
||||
printf("Project Euler, Problem 76\n");
|
||||
printf("Answer: %d\n", n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
88
C/p077.c
88
C/p077.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* What is the first value which can be written as the sum of primes in over five thousand different ways?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -15,69 +17,69 @@
|
||||
#include "projecteuler.h"
|
||||
|
||||
int count(int value, int n, int i, int target);
|
||||
|
||||
|
||||
int primes[100];
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Generate a list of the first 100 primes.*/
|
||||
for(i = 0, j = 0; j < 100; i++)
|
||||
{
|
||||
if(is_prime(i))
|
||||
{
|
||||
primes[j++] = i;
|
||||
}
|
||||
}
|
||||
/* Generate a list of the first 100 primes.*/
|
||||
for(i = 0, j = 0; j < 100; i++)
|
||||
{
|
||||
if(is_prime(i))
|
||||
{
|
||||
primes[j++] = i;
|
||||
}
|
||||
}
|
||||
|
||||
i = 1;
|
||||
i = 1;
|
||||
|
||||
/* Use a function to count the number of prime partitions for
|
||||
* each number >= 2 until the one that can be written in over
|
||||
* 5000 ways is found.*/
|
||||
while((n = count(0, 0, 0, ++i)) <= 5000);
|
||||
/* Use a function to count the number of prime partitions for
|
||||
* each number >= 2 until the one that can be written in over
|
||||
* 5000 ways is found.*/
|
||||
while((n = count(0, 0, 0, ++i)) <= 5000);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 77\n");
|
||||
printf("Answer: %d\n", i);
|
||||
printf("Project Euler, Problem 77\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Function using a simple recursive brute force approach
|
||||
* to find all the partitions.*/
|
||||
int count(int value, int n, int i, int target)
|
||||
{
|
||||
int j;
|
||||
int j;
|
||||
|
||||
for(j = i; j < 100; j++)
|
||||
{
|
||||
value += primes[j];
|
||||
for(j = i; j < 100; j++)
|
||||
{
|
||||
value += primes[j];
|
||||
|
||||
if(value == target)
|
||||
{
|
||||
return n + 1;
|
||||
}
|
||||
else if(value > target)
|
||||
{
|
||||
return n;
|
||||
}
|
||||
else
|
||||
{
|
||||
n = count(value, n, j, target);
|
||||
value -= primes[j];
|
||||
}
|
||||
}
|
||||
if(value == target)
|
||||
{
|
||||
return n + 1;
|
||||
}
|
||||
else if(value > target)
|
||||
{
|
||||
return n;
|
||||
}
|
||||
else
|
||||
{
|
||||
n = count(value, n, j, target);
|
||||
value -= primes[j];
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
return n;
|
||||
}
|
||||
|
32
C/p078.c
32
C/p078.c
@ -11,6 +11,8 @@
|
||||
*
|
||||
* Find the least value of n for which p(n) is divisible by one million.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -20,25 +22,25 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i = -1;
|
||||
long int partitions[N] = {0};
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i = -1;
|
||||
long int partitions[N] = {0};
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Using the partition function to calculate the number of partitions,
|
||||
* giving the result modulo N.*/
|
||||
while(partition_fn(++i, partitions, N) != 0);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
/* Using the partition function to calculate the number of partitions,
|
||||
* giving the result modulo N.*/
|
||||
while(partition_fn(++i, partitions, N) != 0);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 78\n");
|
||||
printf("Answer: %d\n", i);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 78\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
276
C/p079.c
276
C/p079.c
@ -6,6 +6,8 @@
|
||||
* Given that the three characters are always asked for in order, analyse the file so as to determine the shortest possible
|
||||
* secret passcode of unknown length.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -16,174 +18,174 @@ int check_passcode(int **passcode, int len, int **logins, int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, keylog, len = 4, found = 0, digits[10] = {0}, passcode_digits[10] = {0}, **passcode, **logins;
|
||||
char line[5];
|
||||
FILE *fp;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, keylog, len = 4, found = 0, digits[10] = {0}, passcode_digits[10] = {0}, **passcode, **logins;
|
||||
char line[5];
|
||||
FILE *fp;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("keylog.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "keylog.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("keylog.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "keylog.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if((logins = (int **)malloc(50*sizeof(int*))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((logins = (int **)malloc(50*sizeof(int*))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 50; i++)
|
||||
{
|
||||
if((logins[i] = (int *)malloc(3*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
i = 0;
|
||||
|
||||
while(fscanf(fp, "%s", line) != EOF)
|
||||
{
|
||||
j = 2;
|
||||
keylog = atoi(line);
|
||||
|
||||
while(keylog > 0)
|
||||
{
|
||||
logins[i][j--] = keylog % 10;
|
||||
/* Check which digits are present in the login attempts.*/
|
||||
digits[keylog%10]++;
|
||||
keylog /= 10;
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
|
||||
j = 0;
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
/* To generate the passcode, only use the digits present in the
|
||||
* login attempts.*/
|
||||
if(digits[i] > 0)
|
||||
{
|
||||
passcode_digits[j++] = i;
|
||||
}
|
||||
}
|
||||
|
||||
while(!found)
|
||||
{
|
||||
if((passcode = (int **)malloc(len*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
if((passcode[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
for(i = 0; i < 50; i++)
|
||||
{
|
||||
if((logins[i] = (int *)malloc(3*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
/* For the current length, generate the first passcode with the
|
||||
* digits in order.*/
|
||||
*passcode[i] = passcode_digits[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if the passcode is compatible with the login attempts.*/
|
||||
if(check_passcode(passcode, len, logins, 50))
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
i = 0;
|
||||
|
||||
/* For the given length, check every permutation until the correct
|
||||
* passcode has been found, or all the permutations have been tried.*/
|
||||
while(next_permutation((void **)passcode, len, compare) != -1)
|
||||
{
|
||||
if(check_passcode(passcode, len, logins, 50))
|
||||
{
|
||||
printf("Project Euler, Problem 79\n");
|
||||
printf("Answer: ");
|
||||
for(i = 0; i < len; i++)
|
||||
printf("%d", *passcode[i]);
|
||||
printf("\n");
|
||||
while(fscanf(fp, "%s", line) != EOF)
|
||||
{
|
||||
j = 2;
|
||||
keylog = atoi(line);
|
||||
|
||||
while(keylog > 0)
|
||||
{
|
||||
logins[i][j--] = keylog % 10;
|
||||
/* Check which digits are present in the login attempts.*/
|
||||
digits[keylog%10]++;
|
||||
keylog /= 10;
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
|
||||
j = 0;
|
||||
for(i = 0; i < 10; i++)
|
||||
{
|
||||
/* To generate the passcode, only use the digits present in the
|
||||
* login attempts.*/
|
||||
if(digits[i] > 0)
|
||||
{
|
||||
passcode_digits[j++] = i;
|
||||
}
|
||||
}
|
||||
|
||||
while(!found)
|
||||
{
|
||||
if((passcode = (int **)malloc(len*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
if((passcode[i] = (int *)malloc(sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
/* For the current length, generate the first passcode with the
|
||||
* digits in order.*/
|
||||
*passcode[i] = passcode_digits[i];
|
||||
}
|
||||
|
||||
/* Check if the passcode is compatible with the login attempts.*/
|
||||
if(check_passcode(passcode, len, logins, 50))
|
||||
{
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
free(passcode[i]);
|
||||
}
|
||||
free(passcode);
|
||||
/* For the given length, check every permutation until the correct
|
||||
* passcode has been found, or all the permutations have been tried.*/
|
||||
while(next_permutation((void **)passcode, len, compare) != -1)
|
||||
{
|
||||
if(check_passcode(passcode, len, logins, 50))
|
||||
{
|
||||
printf("Project Euler, Problem 79\n");
|
||||
printf("Answer: ");
|
||||
for(i = 0; i < len; i++)
|
||||
printf("%d", *passcode[i]);
|
||||
printf("\n");
|
||||
|
||||
/* If the passcode has not yet been found, try a longer passcode.*/
|
||||
len++;
|
||||
}
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < 50; i++)
|
||||
{
|
||||
free(logins[i]);
|
||||
}
|
||||
for(i = 0; i < len; i++)
|
||||
{
|
||||
free(passcode[i]);
|
||||
}
|
||||
free(passcode);
|
||||
|
||||
free(logins);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
/* If the passcode has not yet been found, try a longer passcode.*/
|
||||
len++;
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
for(i = 0; i < 50; i++)
|
||||
{
|
||||
free(logins[i]);
|
||||
}
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
free(logins);
|
||||
|
||||
return 0;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compare(void *a, void *b)
|
||||
{
|
||||
int *n1, *n2;
|
||||
int *n1, *n2;
|
||||
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
n1 = (int *)a;
|
||||
n2 = (int *)b;
|
||||
|
||||
return *n1 - *n2;
|
||||
return *n1 - *n2;
|
||||
}
|
||||
|
||||
int check_passcode(int **passcode, int len, int **logins, int n)
|
||||
{
|
||||
int i, j, k;
|
||||
int i, j, k;
|
||||
|
||||
/* For every login attempt, check if all the digits appear in the
|
||||
* passcode in the correct order. Return 0 if a login attempt
|
||||
* incompatible with the current passcode is found.*/
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
k = 0;
|
||||
for(j = 0; j < len; j++)
|
||||
{
|
||||
if(*passcode[j] == logins[i][k])
|
||||
{
|
||||
k++;
|
||||
|
||||
if(k == 3)
|
||||
/* For every login attempt, check if all the digits appear in the
|
||||
* passcode in the correct order. Return 0 if a login attempt
|
||||
* incompatible with the current passcode is found.*/
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
k = 0;
|
||||
for(j = 0; j < len; j++)
|
||||
{
|
||||
if(*passcode[j] == logins[i][k])
|
||||
{
|
||||
break;
|
||||
k++;
|
||||
|
||||
if(k == 3)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(k < 3)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if(k < 3)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
92
C/p080.c
92
C/p080.c
@ -6,6 +6,8 @@
|
||||
* For the first one hundred natural numbers, find the total of the digital sums of the first one hundred decimal digits
|
||||
* for all the irrational square roots*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -16,65 +18,65 @@ int is_square(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, sum = 0;
|
||||
char sqrt_digits[104];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpf_t sqrt;
|
||||
int i, j, sum = 0;
|
||||
char sqrt_digits[104];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpf_t sqrt;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Set the precision to 333 bits (should be enough for 100 decimal digits.*/
|
||||
mpf_set_default_prec(333);
|
||||
mpf_init(sqrt);
|
||||
/* Set the precision to 333 bits (should be enough for 100 decimal digits.*/
|
||||
mpf_set_default_prec(333);
|
||||
mpf_init(sqrt);
|
||||
|
||||
for(i = 2; i < 100; i++)
|
||||
{
|
||||
if(is_square(i))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for(i = 2; i < 100; i++)
|
||||
{
|
||||
if(is_square(i))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Calculate the square root of the current number with the given precision
|
||||
* and sum the digits to the total.*/
|
||||
mpf_sqrt_ui(sqrt, i);
|
||||
gmp_sprintf(sqrt_digits, "%.101Ff\n", sqrt);
|
||||
sum += (sqrt_digits[0] - '0');
|
||||
/* Calculate the square root of the current number with the given precision
|
||||
* and sum the digits to the total.*/
|
||||
mpf_sqrt_ui(sqrt, i);
|
||||
gmp_sprintf(sqrt_digits, "%.101Ff\n", sqrt);
|
||||
sum += (sqrt_digits[0] - '0');
|
||||
|
||||
for(j = 2; j < 101; j++)
|
||||
{
|
||||
sum += (sqrt_digits[j] - '0');
|
||||
}
|
||||
}
|
||||
for(j = 2; j < 101; j++)
|
||||
{
|
||||
sum += (sqrt_digits[j] - '0');
|
||||
}
|
||||
}
|
||||
|
||||
mpf_clear(sqrt);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
mpf_clear(sqrt);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 80\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 80\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int is_square(int n)
|
||||
{
|
||||
int m;
|
||||
double p;
|
||||
int m;
|
||||
double p;
|
||||
|
||||
p = sqrt(n);
|
||||
m = p;
|
||||
p = sqrt(n);
|
||||
m = p;
|
||||
|
||||
if(p == m)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if(p == m)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
136
C/p081.c
136
C/p081.c
@ -1,6 +1,6 @@
|
||||
/* In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by only moving to the right and down,
|
||||
* is indicated in bold red and is equal to 2427.
|
||||
*
|
||||
*
|
||||
* *131* 673 234 103 18
|
||||
* *201* *96* *342* 965 150
|
||||
* 630 803 *746* *422* 111
|
||||
@ -10,6 +10,8 @@
|
||||
* Find the minimal path sum, in matrix.txt, a 31K text file containing a 80 by 80 matrix, from the top left to the bottom right
|
||||
* by only moving right and down.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -19,92 +21,92 @@ int sum_paths(int **matrix, int m, int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, dist;
|
||||
int **matrix;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
int i, j, dist;
|
||||
int **matrix;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("matrix.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "matrix.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("matrix.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "matrix.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if((matrix = (int **)malloc(80*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((matrix = (int **)malloc(80*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if((matrix[i] = (int *)malloc(80*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if((matrix[i] = (int *)malloc(80*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
fscanf(fp, "%d,", &matrix[i][j]);
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
fscanf(fp, "%d,", &matrix[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
dist = sum_paths(matrix, 80, 80);
|
||||
dist = sum_paths(matrix, 80, 80);
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
free(matrix[i]);
|
||||
}
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
free(matrix[i]);
|
||||
}
|
||||
|
||||
free(matrix);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
free(matrix);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 81\n");
|
||||
printf("Answer: %d\n", dist);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 81\n");
|
||||
printf("Answer: %d\n", dist);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Get the shortest path starting from the bottom right corner
|
||||
* and going backwards.*/
|
||||
int sum_paths(int **matrix, int m, int n)
|
||||
{
|
||||
int i, j;
|
||||
int i, j;
|
||||
|
||||
for(i = m - 2; i >= 0; i--)
|
||||
{
|
||||
matrix[m-1][i] += matrix[m-1][i+1];
|
||||
matrix[i][m-1] += matrix[i+1][m-1];
|
||||
}
|
||||
for(i = m - 2; i >= 0; i--)
|
||||
{
|
||||
matrix[m-1][i] += matrix[m-1][i+1];
|
||||
matrix[i][m-1] += matrix[i+1][m-1];
|
||||
}
|
||||
|
||||
for(i = m - 2; i >= 0; i--)
|
||||
{
|
||||
for(j = n - 2; j >= 0; j--)
|
||||
{
|
||||
if(matrix[i][j+1] > matrix[i+1][j])
|
||||
{
|
||||
matrix[i][j] += matrix[i+1][j];
|
||||
}
|
||||
else
|
||||
{
|
||||
matrix[i][j] += matrix[i][j+1];
|
||||
}
|
||||
}
|
||||
}
|
||||
for(i = m - 2; i >= 0; i--)
|
||||
{
|
||||
for(j = n - 2; j >= 0; j--)
|
||||
{
|
||||
if(matrix[i][j+1] > matrix[i+1][j])
|
||||
{
|
||||
matrix[i][j] += matrix[i+1][j];
|
||||
}
|
||||
else
|
||||
{
|
||||
matrix[i][j] += matrix[i][j+1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return matrix[0][0];
|
||||
return matrix[0][0];
|
||||
}
|
||||
|
140
C/p082.c
140
C/p082.c
@ -7,10 +7,12 @@
|
||||
* *201* *96* *342* 965 150
|
||||
* 630 803 746 422 111
|
||||
* 537 699 497 121 956
|
||||
* 805 732 524 37 331
|
||||
* 805 732 524 37 331
|
||||
*
|
||||
* Find the minimal path sum, in matrix.txt, a 31K text file containing a 80 by 80 matrix, from the left column to the right column.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -19,85 +21,85 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, min_path=INT_MAX;
|
||||
int **matrix, **distances;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
int i, j, min_path=INT_MAX;
|
||||
int **matrix, **distances;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("matrix.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "matrix.txt");
|
||||
return 1;
|
||||
}
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((matrix = (int **)malloc(80*sizeof(int *))) == NULL ||
|
||||
(distances = (int **)malloc(80*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("matrix.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "matrix.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if((matrix[i] = (int *)malloc(80*sizeof(int))) == NULL ||
|
||||
(distances[i] = (int *)malloc(80*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
if((matrix = (int **)malloc(80*sizeof(int *))) == NULL ||
|
||||
(distances = (int **)malloc(80*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
fscanf(fp, "%d,", &matrix[i][j]);
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if((matrix[i] = (int *)malloc(80*sizeof(int))) == NULL ||
|
||||
(distances[i] = (int *)malloc(80*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
fscanf(fp, "%d,", &matrix[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
/* Use Dijkstra's algorithm starting from all possible nodes
|
||||
* in the first column.*/
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if(dijkstra(matrix, distances, 80, 80, 1, 0, i) == -1)
|
||||
{
|
||||
fprintf(stderr, "Error! Dijkstra function returned -1\n");
|
||||
return 1;
|
||||
}
|
||||
fclose(fp);
|
||||
|
||||
/* For the current starting node, check if there is an ending node
|
||||
* with a smaller path cost than the current minimum.*/
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
if(distances[j][79] < min_path)
|
||||
{
|
||||
min_path = distances[j][79];
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Use Dijkstra's algorithm starting from all possible nodes
|
||||
* in the first column.*/
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if(dijkstra(matrix, distances, 80, 80, 1, 0, i) == -1)
|
||||
{
|
||||
fprintf(stderr, "Error! Dijkstra function returned -1\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
free(matrix[i]);
|
||||
free(distances[i]);
|
||||
}
|
||||
/* For the current starting node, check if there is an ending node
|
||||
* with a smaller path cost than the current minimum.*/
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
if(distances[j][79] < min_path)
|
||||
{
|
||||
min_path = distances[j][79];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(matrix);
|
||||
free(distances);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
free(matrix[i]);
|
||||
free(distances[i]);
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
free(matrix);
|
||||
free(distances);
|
||||
|
||||
printf("Project Euler, Problem 82\n");
|
||||
printf("Answer: %d\n", min_path);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
return 0;
|
||||
printf("Project Euler, Problem 82\n");
|
||||
printf("Answer: %d\n", min_path);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
114
C/p083.c
114
C/p083.c
@ -2,7 +2,7 @@
|
||||
*
|
||||
* In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by moving left, right, up, and down,
|
||||
* is indicated in bold red and is equal to 2297.
|
||||
*
|
||||
*
|
||||
* *131* 673 *234* *103* *18*
|
||||
* *201* *96* *342* 965 *150*
|
||||
* 630 803 746 *422* *111*
|
||||
@ -12,6 +12,8 @@
|
||||
* Find the minimal path sum, in matrix.txt, a 31K text file containing a 80 by 80 matrix,
|
||||
* from the top left to the bottom right by moving left, right, up, and down.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -20,73 +22,73 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, dist;
|
||||
int **matrix, **distances;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
int i, j, dist;
|
||||
int **matrix, **distances;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("matrix.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "matrix.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("matrix.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "matrix.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if((matrix = (int **)malloc(80*sizeof(int *))) == NULL ||
|
||||
(distances = (int **)malloc(80*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((matrix = (int **)malloc(80*sizeof(int *))) == NULL ||
|
||||
(distances = (int **)malloc(80*sizeof(int *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if((matrix[i] = (int *)malloc(80*sizeof(int))) == NULL ||
|
||||
(distances[i] = (int *)malloc(80*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
if((matrix[i] = (int *)malloc(80*sizeof(int))) == NULL ||
|
||||
(distances[i] = (int *)malloc(80*sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
fscanf(fp, "%d,", &matrix[i][j]);
|
||||
}
|
||||
}
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
for(j = 0; j < 80; j++)
|
||||
{
|
||||
fscanf(fp, "%d,", &matrix[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
/* Use Dijkstra's algorithm to find the minimum path.*/
|
||||
if(dijkstra(matrix, distances, 80, 80, 1, 1, 0) == -1)
|
||||
{
|
||||
fprintf(stderr, "Error! Dijkstra function returned -1\n");
|
||||
return 1;
|
||||
}
|
||||
/* Use Dijkstra's algorithm to find the minimum path.*/
|
||||
if(dijkstra(matrix, distances, 80, 80, 1, 1, 0) == -1)
|
||||
{
|
||||
fprintf(stderr, "Error! Dijkstra function returned -1\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
dist = distances[79][79];
|
||||
dist = distances[79][79];
|
||||
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
free(matrix[i]);
|
||||
free(distances[i]);
|
||||
}
|
||||
for(i = 0; i < 80; i++)
|
||||
{
|
||||
free(matrix[i]);
|
||||
free(distances[i]);
|
||||
}
|
||||
|
||||
free(matrix);
|
||||
free(distances);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
free(matrix);
|
||||
free(distances);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 83\n");
|
||||
printf("Answer: %d\n", dist);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 83\n");
|
||||
printf("Answer: %d\n", dist);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
419
C/p084.c
419
C/p084.c
@ -52,7 +52,7 @@
|
||||
* Go back 3 squares.
|
||||
*
|
||||
* The heart of this problem concerns the likelihood of visiting a particular square. That is, the probability of finishing
|
||||
* at that square after a roll. For this reason it should be clear that, with the exception of G2J for which the probability
|
||||
* at that square after a roll. For this reason it should be clear that, with the exception of G2J for which the probability
|
||||
* of finishing on it is zero, the CH squares will have the lowest probabilities, as 5/8 request a movement to another square,
|
||||
* and it is the final square that the player finishes at on each roll that we are interested in. We shall make no distinction
|
||||
* between "Just Visiting" and being sent to JAIL, and we shall also ignore the rule about requiring a double to "get out of jail",
|
||||
@ -66,6 +66,8 @@
|
||||
*
|
||||
* If, instead of using two 6-sided dice, two 4-sided dice are used, find the six-digit modal string.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -75,8 +77,9 @@
|
||||
|
||||
/* Define the squares, the type of Community Chest cards and the type of Chance cards.*/
|
||||
typedef enum {GO, A1, CC1, A2, T1, R1, B1, CH1, B2, B3, JAIL,
|
||||
C1, U1, C2, C3, R2, D1, CC2, D2, D3, FP, E1, CH2, E2, E3, R3, F1,
|
||||
F2, U2, F3, G2J, G1, G2, CC3, G3, R4, CH3, H1, T2, H2} squares;
|
||||
C1, U1, C2, C3, R2, D1, CC2, D2, D3, FP, E1, CH2, E2, E3, R3, F1,
|
||||
F2, U2, F3, G2J, G1, G2, CC3, G3, R4, CH3, H1, T2, H2
|
||||
} squares;
|
||||
typedef enum {GO_cc, JAIL_cc, NOP_cc} cc_card;
|
||||
typedef enum {GO_ch, JAIL_ch, C1_ch, E3_ch, H2_ch, R1_ch, R_ch1, R_ch2, U_ch, M3, NOP_ch} ch_card;
|
||||
|
||||
@ -86,261 +89,261 @@ void play(long int *count_squares);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, max, max_i;
|
||||
long int count_squares[40] = {0};
|
||||
char sq[3], *res;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, max, max_i;
|
||||
long int count_squares[40] = {0};
|
||||
char sq[3], *res;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
srand(time(NULL));
|
||||
srand(time(NULL));
|
||||
|
||||
/* Play Monopoly.*/
|
||||
play(count_squares);
|
||||
/* Play Monopoly.*/
|
||||
play(count_squares);
|
||||
|
||||
if((res = (char *)malloc(7*sizeof(char))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((res = (char *)malloc(7*sizeof(char))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Find the three squares with maximum count.*/
|
||||
for(i = 0; i < 3; i++)
|
||||
{
|
||||
max = -1;
|
||||
/* Find the three squares with maximum count.*/
|
||||
for(i = 0; i < 3; i++)
|
||||
{
|
||||
max = -1;
|
||||
|
||||
for(j = 0; j < 40; j++)
|
||||
{
|
||||
if(count_squares[j] > max)
|
||||
{
|
||||
max = count_squares[j];
|
||||
max_i = j;
|
||||
}
|
||||
}
|
||||
for(j = 0; j < 40; j++)
|
||||
{
|
||||
if(count_squares[j] > max)
|
||||
{
|
||||
max = count_squares[j];
|
||||
max_i = j;
|
||||
}
|
||||
}
|
||||
|
||||
if(max_i < 10)
|
||||
{
|
||||
sprintf(sq, "0%d", max_i);
|
||||
}
|
||||
else
|
||||
{
|
||||
sprintf(sq, "%d", max_i);
|
||||
}
|
||||
if(max_i < 10)
|
||||
{
|
||||
sprintf(sq, "0%d", max_i);
|
||||
}
|
||||
else
|
||||
{
|
||||
sprintf(sq, "%d", max_i);
|
||||
}
|
||||
|
||||
res = strcat(res, sq);
|
||||
res = strcat(res, sq);
|
||||
|
||||
count_squares[max_i] = 0;
|
||||
}
|
||||
count_squares[max_i] = 0;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 84\n");
|
||||
printf("Answer: %s\n", res);
|
||||
printf("Project Euler, Problem 84\n");
|
||||
printf("Answer: %s\n", res);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
free(res);
|
||||
free(res);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Shuffle the Community Chest cards.*/
|
||||
void shuffle_cc(cc_card cc[])
|
||||
{
|
||||
int i;
|
||||
cc_card c;
|
||||
int i;
|
||||
cc_card c;
|
||||
|
||||
for(i = 0; i < 16; i++)
|
||||
{
|
||||
cc[i] = NOP_cc;
|
||||
}
|
||||
for(i = 0; i < 16; i++)
|
||||
{
|
||||
cc[i] = NOP_cc;
|
||||
}
|
||||
|
||||
c = GO_cc;
|
||||
c = GO_cc;
|
||||
|
||||
do
|
||||
{
|
||||
do
|
||||
{
|
||||
i = rand() % 16;
|
||||
}while(cc[i] != NOP_cc);
|
||||
do
|
||||
{
|
||||
do
|
||||
{
|
||||
i = rand() % 16;
|
||||
} while(cc[i] != NOP_cc);
|
||||
|
||||
cc[i] = c;
|
||||
c++;
|
||||
}while(c < NOP_cc);
|
||||
cc[i] = c;
|
||||
c++;
|
||||
} while(c < NOP_cc);
|
||||
}
|
||||
|
||||
/* Shuffle the Chance cards.*/
|
||||
void shuffle_ch(ch_card ch[])
|
||||
{
|
||||
int i;
|
||||
ch_card h;
|
||||
int i;
|
||||
ch_card h;
|
||||
|
||||
for(i = 0; i < 16; i++)
|
||||
{
|
||||
ch[i] = NOP_ch;
|
||||
}
|
||||
for(i = 0; i < 16; i++)
|
||||
{
|
||||
ch[i] = NOP_ch;
|
||||
}
|
||||
|
||||
h = GO_ch;
|
||||
h = GO_ch;
|
||||
|
||||
do
|
||||
{
|
||||
do
|
||||
{
|
||||
i = rand() % 16;
|
||||
}while(ch[i] != NOP_ch);
|
||||
do
|
||||
{
|
||||
do
|
||||
{
|
||||
i = rand() % 16;
|
||||
} while(ch[i] != NOP_ch);
|
||||
|
||||
ch[i] = h;
|
||||
h++;
|
||||
}while(h < NOP_ch);
|
||||
ch[i] = h;
|
||||
h++;
|
||||
} while(h < NOP_ch);
|
||||
}
|
||||
|
||||
/* Function to play Monopoly, rolling the dice N times.*/
|
||||
void play(long int *count_squares)
|
||||
{
|
||||
int i, d1, d2, cc_i, ch_i, count_doubles;
|
||||
squares current;
|
||||
cc_card cc[16];
|
||||
ch_card ch[16];
|
||||
|
||||
/* Start from GO.*/
|
||||
current = GO;
|
||||
count_squares[GO]++;
|
||||
cc_i = 0;
|
||||
ch_i = 0;
|
||||
count_doubles = 0;
|
||||
int i, d1, d2, cc_i, ch_i, count_doubles;
|
||||
squares current;
|
||||
cc_card cc[16];
|
||||
ch_card ch[16];
|
||||
|
||||
shuffle_cc(cc);
|
||||
shuffle_ch(ch);
|
||||
/* Start from GO.*/
|
||||
current = GO;
|
||||
count_squares[GO]++;
|
||||
cc_i = 0;
|
||||
ch_i = 0;
|
||||
count_doubles = 0;
|
||||
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
/* Roll the dice.*/
|
||||
d1 = 1 + rand() % 4;
|
||||
d2 = 1 + rand() % 4;
|
||||
shuffle_cc(cc);
|
||||
shuffle_ch(ch);
|
||||
|
||||
/* Check if it's a double. Increment the doubles counter if yes,
|
||||
* reset it if no.*/
|
||||
if(d1 == d2)
|
||||
{
|
||||
count_doubles++;
|
||||
}
|
||||
else
|
||||
{
|
||||
count_doubles=0;
|
||||
}
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
/* Roll the dice.*/
|
||||
d1 = 1 + rand() % 4;
|
||||
d2 = 1 + rand() % 4;
|
||||
|
||||
/* If this is the third double in a row, go to JAIL and reset
|
||||
* the doubles counter.*/
|
||||
if(count_doubles == 3)
|
||||
{
|
||||
current = JAIL;
|
||||
count_doubles = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Move based on the dice roll.*/
|
||||
current = (current + d1 + d2) % 40;
|
||||
/* Check if it's a double. Increment the doubles counter if yes,
|
||||
* reset it if no.*/
|
||||
if(d1 == d2)
|
||||
{
|
||||
count_doubles++;
|
||||
}
|
||||
else
|
||||
{
|
||||
count_doubles=0;
|
||||
}
|
||||
|
||||
/* If you get to the Go to JAIL square, go to JAIL.*/
|
||||
if(current == G2J)
|
||||
{
|
||||
/* If this is the third double in a row, go to JAIL and reset
|
||||
* the doubles counter.*/
|
||||
if(count_doubles == 3)
|
||||
{
|
||||
current = JAIL;
|
||||
}
|
||||
/* If you get to one of the Community Chest squares, get a CC card.*/
|
||||
else if(current == CC1 || current == CC2 || current == CC3)
|
||||
{
|
||||
/* Go to GO.*/
|
||||
if(cc[cc_i] == GO_cc)
|
||||
{
|
||||
current = GO;
|
||||
}
|
||||
/* Go to JAIL.*/
|
||||
else if(cc[cc_i] == JAIL_cc)
|
||||
{
|
||||
current = JAIL;
|
||||
}
|
||||
/* Otherwise do nothing.*/
|
||||
count_doubles = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Move based on the dice roll.*/
|
||||
current = (current + d1 + d2) % 40;
|
||||
|
||||
cc_i = (cc_i + 1) % 16;
|
||||
}
|
||||
/* If you get to one of the Chance squares, get a CH card.*/
|
||||
else if(current == CH1 || current == CH2 || current == CH3)
|
||||
{
|
||||
/* Go to GO.*/
|
||||
if(ch[ch_i] == GO_ch)
|
||||
/* If you get to the Go to JAIL square, go to JAIL.*/
|
||||
if(current == G2J)
|
||||
{
|
||||
current = GO;
|
||||
current = JAIL;
|
||||
}
|
||||
/* Go to JAIL.*/
|
||||
else if(ch[ch_i] == JAIL_ch)
|
||||
/* If you get to one of the Community Chest squares, get a CC card.*/
|
||||
else if(current == CC1 || current == CC2 || current == CC3)
|
||||
{
|
||||
current = JAIL;
|
||||
}
|
||||
/* Go to C1.*/
|
||||
else if(ch[ch_i] == C1_ch)
|
||||
{
|
||||
current = C1;
|
||||
}
|
||||
/* Go to E3.*/
|
||||
else if(ch[ch_i] == E3_ch)
|
||||
{
|
||||
current = E3;
|
||||
}
|
||||
/* Go to H2.*/
|
||||
else if(ch[ch_i] == H2_ch)
|
||||
{
|
||||
current = H2;
|
||||
}
|
||||
/* Go to R1.*/
|
||||
else if(ch[ch_i] == R1_ch)
|
||||
{
|
||||
current = R1;
|
||||
}
|
||||
/* Go to the next Railway station.*/
|
||||
else if(ch[ch_i] == R_ch1 || ch[ch_i] == R_ch2)
|
||||
{
|
||||
do
|
||||
{
|
||||
current = (current + 1) % 40;
|
||||
}while(current != R1 && current != R2 && current != R3 && current != R4);
|
||||
}
|
||||
/* Go to the next Utility company.*/
|
||||
else if(ch[ch_i] == U_ch)
|
||||
{
|
||||
do
|
||||
{
|
||||
current = (current + 1) % 40;
|
||||
}while(current != U1 && current != U2);
|
||||
}
|
||||
/* Go back three squares.*/
|
||||
else if(ch[ch_i] == M3)
|
||||
{
|
||||
current = current - 3;
|
||||
/* Go to GO.*/
|
||||
if(cc[cc_i] == GO_cc)
|
||||
{
|
||||
current = GO;
|
||||
}
|
||||
/* Go to JAIL.*/
|
||||
else if(cc[cc_i] == JAIL_cc)
|
||||
{
|
||||
current = JAIL;
|
||||
}
|
||||
/* Otherwise do nothing.*/
|
||||
|
||||
/* If you get to Community Chest 3, get a card.*/
|
||||
if(current == CC3)
|
||||
{
|
||||
if(cc[cc_i] == GO_cc)
|
||||
{
|
||||
current = GO;
|
||||
}
|
||||
else if(cc[cc_i] == JAIL_cc)
|
||||
{
|
||||
current=JAIL;
|
||||
}
|
||||
|
||||
cc_i = (cc_i + 1) % 16;
|
||||
}
|
||||
cc_i = (cc_i + 1) % 16;
|
||||
}
|
||||
/* If you get to one of the Chance squares, get a CH card.*/
|
||||
else if(current == CH1 || current == CH2 || current == CH3)
|
||||
{
|
||||
/* Go to GO.*/
|
||||
if(ch[ch_i] == GO_ch)
|
||||
{
|
||||
current = GO;
|
||||
}
|
||||
/* Go to JAIL.*/
|
||||
else if(ch[ch_i] == JAIL_ch)
|
||||
{
|
||||
current = JAIL;
|
||||
}
|
||||
/* Go to C1.*/
|
||||
else if(ch[ch_i] == C1_ch)
|
||||
{
|
||||
current = C1;
|
||||
}
|
||||
/* Go to E3.*/
|
||||
else if(ch[ch_i] == E3_ch)
|
||||
{
|
||||
current = E3;
|
||||
}
|
||||
/* Go to H2.*/
|
||||
else if(ch[ch_i] == H2_ch)
|
||||
{
|
||||
current = H2;
|
||||
}
|
||||
/* Go to R1.*/
|
||||
else if(ch[ch_i] == R1_ch)
|
||||
{
|
||||
current = R1;
|
||||
}
|
||||
/* Go to the next Railway station.*/
|
||||
else if(ch[ch_i] == R_ch1 || ch[ch_i] == R_ch2)
|
||||
{
|
||||
do
|
||||
{
|
||||
current = (current + 1) % 40;
|
||||
} while(current != R1 && current != R2 && current != R3 && current != R4);
|
||||
}
|
||||
/* Go to the next Utility company.*/
|
||||
else if(ch[ch_i] == U_ch)
|
||||
{
|
||||
do
|
||||
{
|
||||
current = (current + 1) % 40;
|
||||
} while(current != U1 && current != U2);
|
||||
}
|
||||
/* Go back three squares.*/
|
||||
else if(ch[ch_i] == M3)
|
||||
{
|
||||
current = current - 3;
|
||||
|
||||
ch_i = (ch_i + 1) % 16;
|
||||
}
|
||||
}
|
||||
/* If you get to Community Chest 3, get a card.*/
|
||||
if(current == CC3)
|
||||
{
|
||||
if(cc[cc_i] == GO_cc)
|
||||
{
|
||||
current = GO;
|
||||
}
|
||||
else if(cc[cc_i] == JAIL_cc)
|
||||
{
|
||||
current=JAIL;
|
||||
}
|
||||
|
||||
/* Increase the counter for the current square.*/
|
||||
count_squares[current]++;
|
||||
}
|
||||
cc_i = (cc_i + 1) % 16;
|
||||
}
|
||||
}
|
||||
|
||||
ch_i = (ch_i + 1) % 16;
|
||||
}
|
||||
}
|
||||
|
||||
/* Increase the counter for the current square.*/
|
||||
count_squares[current]++;
|
||||
}
|
||||
}
|
||||
|
62
C/p085.c
62
C/p085.c
@ -2,6 +2,8 @@
|
||||
*
|
||||
* Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the nearest solution.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -10,41 +12,41 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, j, n, diff, min_diff = INT_MAX, area;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, j, n, diff, min_diff = INT_MAX, area;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 1; i < 100; i++)
|
||||
{
|
||||
for(j = 1; j <= i; j++)
|
||||
{
|
||||
/* In a 2x3 grid, we can take rectangles of height 2 in 3 ways
|
||||
* (two rectangles of height one and one of height 2). For the
|
||||
* width, can take 6 rectangles (3 of width 1, 2 of width 2 and
|
||||
* 1 of width 3). The total is 6x3=18 rectagles.
|
||||
* Extending to mxn, we can take (m+m-1+m-2+...+1)x(n+n-1+n-2+...+1)=
|
||||
* m(m+1)/2*n(n+1)/2=m(m+1)*n(n+1)/4 rectangles.*/
|
||||
n = ( i * (i + 1) * j * (j + 1)) / 4;
|
||||
diff = abs(2000000 - n);
|
||||
for(i = 1; i < 100; i++)
|
||||
{
|
||||
for(j = 1; j <= i; j++)
|
||||
{
|
||||
/* In a 2x3 grid, we can take rectangles of height 2 in 3 ways
|
||||
* (two rectangles of height one and one of height 2). For the
|
||||
* width, can take 6 rectangles (3 of width 1, 2 of width 2 and
|
||||
* 1 of width 3). The total is 6x3=18 rectagles.
|
||||
* Extending to mxn, we can take (m+m-1+m-2+...+1)x(n+n-1+n-2+...+1)=
|
||||
* m(m+1)/2*n(n+1)/2=m(m+1)*n(n+1)/4 rectangles.*/
|
||||
n = ( i * (i + 1) * j * (j + 1)) / 4;
|
||||
diff = abs(2000000 - n);
|
||||
|
||||
if(diff < min_diff)
|
||||
{
|
||||
min_diff = diff;
|
||||
area = i * j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(diff < min_diff)
|
||||
{
|
||||
min_diff = diff;
|
||||
area = i * j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 85\n");
|
||||
printf("Answer: %d\n", area);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 85\n");
|
||||
printf("Answer: %d\n", area);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
56
C/p086.c
56
C/p086.c
@ -9,6 +9,8 @@
|
||||
*
|
||||
* Find the least value of M such that the number of solutions first exceeds one million.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -16,41 +18,41 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int a, b, c, count = 0;
|
||||
double d, elapsed;
|
||||
struct timespec start, end;
|
||||
int a, b, c, count = 0;
|
||||
double d, elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
a = 0;
|
||||
a = 0;
|
||||
|
||||
while(count <= 1000000)
|
||||
{
|
||||
a++;
|
||||
while(count <= 1000000)
|
||||
{
|
||||
a++;
|
||||
|
||||
for(b = 1; b <= a; b++)
|
||||
{
|
||||
for(c = 1; c <= b; c++)
|
||||
{
|
||||
/* Unfolding the cuboid, it's obvious that the shortest path
|
||||
* is the hypotenuse of a triangle, and the catheti are the
|
||||
* longest side of the cubois and the sum of the other two sides.*/
|
||||
d = sqrt(a*a+(b+c)*(b+c));
|
||||
for(b = 1; b <= a; b++)
|
||||
{
|
||||
for(c = 1; c <= b; c++)
|
||||
{
|
||||
/* Unfolding the cuboid, it's obvious that the shortest path
|
||||
* is the hypotenuse of a triangle, and the catheti are the
|
||||
* longest side of the cubois and the sum of the other two sides.*/
|
||||
d = sqrt(a*a+(b+c)*(b+c));
|
||||
|
||||
if(d == (int)d)
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(d == (int)d)
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 86\n");
|
||||
printf("Answer: %d\n", a);
|
||||
printf("Project Euler, Problem 86\n");
|
||||
printf("Answer: %d\n", a);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
118
C/p087.c
118
C/p087.c
@ -8,6 +8,8 @@
|
||||
*
|
||||
* How many numbers below fifty million can be expressed as the sum of a prime square, prime cube, and prime fourth power?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -23,71 +25,71 @@ int *primes;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int count = 0;
|
||||
int *numbers;
|
||||
long int i, j, k, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int count = 0;
|
||||
int *numbers;
|
||||
long int i, j, k, n;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Generate primes up to the square root of the limit.*/
|
||||
if((primes = sieve(SQRT_N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
/* Generate primes up to the square root of the limit.*/
|
||||
if((primes = sieve(SQRT_N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if((numbers = (int *)calloc(N, sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((numbers = (int *)calloc(N, sizeof(int))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* If i>sqrt(n), i*i will be >n, so n won't be a sum of
|
||||
* a square, cube and fourth power.*/
|
||||
for(i = 2; i <= SQRT_N; i++)
|
||||
{
|
||||
/* If i is not prime, try next number.*/
|
||||
if(primes[i])
|
||||
{
|
||||
/* If j>cubic_root(n), j*j*j will be >n.*/
|
||||
for(j = 2; j <= RAD3_N; j++)
|
||||
{
|
||||
if(primes[j])
|
||||
/* If i>sqrt(n), i*i will be >n, so n won't be a sum of
|
||||
* a square, cube and fourth power.*/
|
||||
for(i = 2; i <= SQRT_N; i++)
|
||||
{
|
||||
/* If i is not prime, try next number.*/
|
||||
if(primes[i])
|
||||
{
|
||||
/* If j>cubic_root(n), j*j*j will be >n.*/
|
||||
for(j = 2; j <= RAD3_N; j++)
|
||||
{
|
||||
/* If k>fourth_root(n), k*k*k*k will be >n.*/
|
||||
for(k = 2; k <= RAD4_N; k++)
|
||||
{
|
||||
if(primes[k])
|
||||
{
|
||||
n = i * i + j * j * j + k * k * k * k;
|
||||
if(primes[j])
|
||||
{
|
||||
/* If k>fourth_root(n), k*k*k*k will be >n.*/
|
||||
for(k = 2; k <= RAD4_N; k++)
|
||||
{
|
||||
if(primes[k])
|
||||
{
|
||||
n = i * i + j * j * j + k * k * k * k;
|
||||
|
||||
/* Check if the number found is lower than the limit,
|
||||
* and make sure it hasn't been found before.*/
|
||||
if(n < N && numbers[n] == 0)
|
||||
{
|
||||
count++;
|
||||
numbers[n] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Check if the number found is lower than the limit,
|
||||
* and make sure it hasn't been found before.*/
|
||||
if(n < N && numbers[n] == 0)
|
||||
{
|
||||
count++;
|
||||
numbers[n] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(primes);
|
||||
free(numbers);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 87\n");
|
||||
printf("Answer: %d\n", count);
|
||||
free(primes);
|
||||
free(numbers);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 87\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
124
C/p089.c
124
C/p089.c
@ -19,6 +19,8 @@
|
||||
*
|
||||
* Note: You can assume that all the Roman numerals in the file contain no more than four consecutive identical units.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -28,81 +30,81 @@ int reduce(char *numeral, int l);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, l, count = 0, count_reduced = 0;
|
||||
char *numerals[1000];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
int i, l, count = 0, count_reduced = 0;
|
||||
char *numerals[1000];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("roman.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "roman.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("roman.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "roman.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Get the roman numerals from file, for each find its length, then
|
||||
* reduce it and find the new length. At the end, find the difference
|
||||
* of the two lengths.*/
|
||||
for(i = 0; i < 1000; i++)
|
||||
{
|
||||
fscanf(fp, "%ms", &numerals[i]);
|
||||
l = strlen(numerals[i]);
|
||||
count += l;
|
||||
l = reduce(numerals[i], l);
|
||||
count_reduced += l;
|
||||
free(numerals[i]);
|
||||
}
|
||||
/* Get the roman numerals from file, for each find its length, then
|
||||
* reduce it and find the new length. At the end, find the difference
|
||||
* of the two lengths.*/
|
||||
for(i = 0; i < 1000; i++)
|
||||
{
|
||||
fscanf(fp, "%ms", &numerals[i]);
|
||||
l = strlen(numerals[i]);
|
||||
count += l;
|
||||
l = reduce(numerals[i], l);
|
||||
count_reduced += l;
|
||||
free(numerals[i]);
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 89\n");
|
||||
printf("Answer: %d\n", count-count_reduced);
|
||||
printf("Project Euler, Problem 89\n");
|
||||
printf("Answer: %d\n", count-count_reduced);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int reduce(char *numeral, int l)
|
||||
{
|
||||
/* DCCCC = CM.*/
|
||||
if(strstr(numeral, "DCCCC") != NULL)
|
||||
{
|
||||
l -= 3;
|
||||
}
|
||||
/* CCCC = CD.*/
|
||||
else if(strstr(numeral, "CCCC") != NULL)
|
||||
{
|
||||
l -= 2;
|
||||
}
|
||||
/* DCCCC = CM.*/
|
||||
if(strstr(numeral, "DCCCC") != NULL)
|
||||
{
|
||||
l -= 3;
|
||||
}
|
||||
/* CCCC = CD.*/
|
||||
else if(strstr(numeral, "CCCC") != NULL)
|
||||
{
|
||||
l -= 2;
|
||||
}
|
||||
|
||||
/* LXXXX = XC.*/
|
||||
if(strstr(numeral, "LXXXX") != NULL)
|
||||
{
|
||||
l -= 3;
|
||||
}
|
||||
/* XXXX = XL.*/
|
||||
else if(strstr(numeral, "XXXX") != NULL)
|
||||
{
|
||||
l -= 2;
|
||||
}
|
||||
/* LXXXX = XC.*/
|
||||
if(strstr(numeral, "LXXXX") != NULL)
|
||||
{
|
||||
l -= 3;
|
||||
}
|
||||
/* XXXX = XL.*/
|
||||
else if(strstr(numeral, "XXXX") != NULL)
|
||||
{
|
||||
l -= 2;
|
||||
}
|
||||
|
||||
/* VIIII = IX.*/
|
||||
if(strstr(numeral, "VIIII") != NULL)
|
||||
{
|
||||
l -= 3;
|
||||
}
|
||||
/* IIII = IV.*/
|
||||
else if(strstr(numeral, "IIII") != NULL)
|
||||
{
|
||||
l -= 2;
|
||||
}
|
||||
/* VIIII = IX.*/
|
||||
if(strstr(numeral, "VIIII") != NULL)
|
||||
{
|
||||
l -= 3;
|
||||
}
|
||||
/* IIII = IV.*/
|
||||
else if(strstr(numeral, "IIII") != NULL)
|
||||
{
|
||||
l -= 2;
|
||||
}
|
||||
|
||||
return l;
|
||||
return l;
|
||||
}
|
||||
|
86
C/p092.c
86
C/p092.c
@ -10,6 +10,8 @@
|
||||
*
|
||||
* How many starting numbers below ten million will arrive at 89?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -22,63 +24,63 @@ int chain(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 1; i < N; i++)
|
||||
{
|
||||
/* Simply create a chain for each number and check if it ends at 89, saving
|
||||
* the result so it can be reused.*/
|
||||
if((chains[i] = chain(i)) == 89)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
for(i = 1; i < N; i++)
|
||||
{
|
||||
/* Simply create a chain for each number and check if it ends at 89, saving
|
||||
* the result so it can be reused.*/
|
||||
if((chains[i] = chain(i)) == 89)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 92\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 92\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Recursively find the chain for n.*/
|
||||
int chain(int n)
|
||||
{
|
||||
int tmp = 0, digit;
|
||||
int tmp = 0, digit;
|
||||
|
||||
/* If n=1 or n=89, we reached the end of the chain.*/
|
||||
if(n == 1)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
/* If n=1 or n=89, we reached the end of the chain.*/
|
||||
if(n == 1)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(n == 89)
|
||||
{
|
||||
return 89;
|
||||
}
|
||||
if(n == 89)
|
||||
{
|
||||
return 89;
|
||||
}
|
||||
|
||||
/* If the chain for the current n has already been found,
|
||||
* return the value.*/
|
||||
if(chains[n] != 0)
|
||||
{
|
||||
return chains[n];
|
||||
}
|
||||
/* If the chain for the current n has already been found,
|
||||
* return the value.*/
|
||||
if(chains[n] != 0)
|
||||
{
|
||||
return chains[n];
|
||||
}
|
||||
|
||||
while(n > 0)
|
||||
{
|
||||
digit = n % 10;
|
||||
tmp += digit * digit;
|
||||
n /= 10;
|
||||
}
|
||||
while(n > 0)
|
||||
{
|
||||
digit = n % 10;
|
||||
tmp += digit * digit;
|
||||
n /= 10;
|
||||
}
|
||||
|
||||
return chain(tmp);
|
||||
return chain(tmp);
|
||||
}
|
||||
|
154
C/p095.c
154
C/p095.c
@ -12,6 +12,8 @@
|
||||
*
|
||||
* Find the smallest member of the longest amicable chain with no element exceeding one million.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -26,99 +28,99 @@ int divisors[N] = {0};
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, min = 0, min_tmp, length, l_max = 0;
|
||||
int chain[100];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, min = 0, min_tmp, length, l_max = 0;
|
||||
int chain[100];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 4; i <= N; i++)
|
||||
{
|
||||
/* Calculate the divisors of i and save it. Ii is equal to the sum of its proper divisors,
|
||||
* the length of the chain is 1 and we don't need to check it.*/
|
||||
if((divisors[i] = sum_of_divisors(i, 1)) == i)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
min_tmp = i;
|
||||
length = sociable_chain(i, chain, 0, &min_tmp);
|
||||
}
|
||||
|
||||
if(length > l_max)
|
||||
{
|
||||
l_max = length;
|
||||
min = min_tmp;
|
||||
}
|
||||
}
|
||||
for(i = 4; i <= N; i++)
|
||||
{
|
||||
/* Calculate the divisors of i and save it. Ii is equal to the sum of its proper divisors,
|
||||
* the length of the chain is 1 and we don't need to check it.*/
|
||||
if((divisors[i] = sum_of_divisors(i, 1)) == i)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
min_tmp = i;
|
||||
length = sociable_chain(i, chain, 0, &min_tmp);
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(length > l_max)
|
||||
{
|
||||
l_max = length;
|
||||
min = min_tmp;
|
||||
}
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 95\n");
|
||||
printf("Answer: %d\n", min);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 95\n");
|
||||
printf("Answer: %d\n", min);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Function to recursively find the length of the chain.*/
|
||||
int sociable_chain(int i, int *chain, int l, int *min)
|
||||
{
|
||||
int n;
|
||||
int n;
|
||||
|
||||
/* Save current number in the chain.*/
|
||||
chain[l] = i;
|
||||
/* Save current number in the chain.*/
|
||||
chain[l] = i;
|
||||
|
||||
/* If we reached 1, the chain will never go anywhere.*/
|
||||
if(i == 1)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
/* If we reached 1, the chain will never go anywhere.*/
|
||||
if(i == 1)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Calculate the divisors of i, or retrieve the value if previously calculated.*/
|
||||
if(divisors[i] != 0)
|
||||
{
|
||||
n = divisors[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
n = sum_of_divisors(i, 1);
|
||||
divisors[i] = n;
|
||||
}
|
||||
|
||||
/* We are looking for chain where no value is greater than 1000000.*/
|
||||
if(n > N)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
/* Calculate the divisors of i, or retrieve the value if previously calculated.*/
|
||||
if(divisors[i] != 0)
|
||||
{
|
||||
n = divisors[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
n = sum_of_divisors(i, 1);
|
||||
divisors[i] = n;
|
||||
}
|
||||
|
||||
/* If the next number in the chain is equal to the starting one, the chain is finished.*/
|
||||
if(n == chain[0])
|
||||
{
|
||||
return l + 1;
|
||||
}
|
||||
/* We are looking for chain where no value is greater than 1000000.*/
|
||||
if(n > N)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Check if n is equal to another value of the chain different from start. If it is, the
|
||||
* chain is stuck in a loop that will not return to the starting number.*/
|
||||
for(i = l; i > 0; i--)
|
||||
{
|
||||
if(n == chain[i])
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
/* If the next number in the chain is equal to the starting one, the chain is finished.*/
|
||||
if(n == chain[0])
|
||||
{
|
||||
return l + 1;
|
||||
}
|
||||
|
||||
/* If the next value is smaller than the minimum value of the chain,
|
||||
* update the minimum.*/
|
||||
if(n < *min)
|
||||
{
|
||||
*min = n;
|
||||
}
|
||||
/* Check if n is equal to another value of the chain different from start. If it is, the
|
||||
* chain is stuck in a loop that will not return to the starting number.*/
|
||||
for(i = l; i > 0; i--)
|
||||
{
|
||||
if(n == chain[i])
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
return sociable_chain(n, chain, l+1, min);
|
||||
/* If the next value is smaller than the minimum value of the chain,
|
||||
* update the minimum.*/
|
||||
if(n < *min)
|
||||
{
|
||||
*min = n;
|
||||
}
|
||||
|
||||
return sociable_chain(n, chain, l+1, min);
|
||||
}
|
||||
|
406
C/p096.c
406
C/p096.c
@ -25,6 +25,8 @@
|
||||
* By solving all fifty puzzles find the sum of the 3-digit numbers found in the top left corner of each solution grid;
|
||||
* for example, 483 is the 3-digit number found in the top left corner of the solution grid above.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -35,266 +37,266 @@ int check(int grid[][9], int i, int j, int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char dummy[10], dummy_c;
|
||||
int i, j, sum = 0, partial;
|
||||
int grid[9][9];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
char dummy[10], dummy_c;
|
||||
int i, j, sum = 0, partial;
|
||||
int grid[9][9];
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("sudoku.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "sudoku.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("sudoku.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "sudoku.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
while(!feof(fp))
|
||||
{
|
||||
fgets(dummy, sizeof(dummy), fp);
|
||||
while(!feof(fp))
|
||||
{
|
||||
fgets(dummy, sizeof(dummy), fp);
|
||||
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
fscanf(fp, "%c", &dummy_c);
|
||||
grid[i][j] = (int)dummy_c - '0';
|
||||
}
|
||||
|
||||
fscanf(fp, "%c", &dummy_c);
|
||||
}
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
fscanf(fp, "%c", &dummy_c);
|
||||
grid[i][j] = (int)dummy_c - '0';
|
||||
}
|
||||
|
||||
/* For each sudoku in the file, solve it and sum the number in the
|
||||
* top left corner to the total.*/
|
||||
if(!solve_sudoku(grid))
|
||||
{
|
||||
printf("Bad sudoku grid\n");
|
||||
return 1;
|
||||
}
|
||||
fscanf(fp, "%c", &dummy_c);
|
||||
}
|
||||
|
||||
partial = grid[0][0] * 100 + grid[0][1] * 10 + grid[0][2];
|
||||
sum += partial;
|
||||
}
|
||||
/* For each sudoku in the file, solve it and sum the number in the
|
||||
* top left corner to the total.*/
|
||||
if(!solve_sudoku(grid))
|
||||
{
|
||||
printf("Bad sudoku grid\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
partial = grid[0][0] * 100 + grid[0][1] * 10 + grid[0][2];
|
||||
sum += partial;
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
fclose(fp);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 96\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
return 0;
|
||||
printf("Project Euler, Problem 96\n");
|
||||
printf("Answer: %d\n", sum);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int check(int grid[][9], int i, int j, int n)
|
||||
{
|
||||
int k, w, ii, jj;
|
||||
int k, w, ii, jj;
|
||||
|
||||
for(k = 0; k < 9; k++)
|
||||
{
|
||||
if(k != j && grid[i][k] == n)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
for(k = 0; k < 9; k++)
|
||||
{
|
||||
if(k != i && grid[k][j] == n)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
ii = 3 * (i / 3);
|
||||
jj = 3 * (j / 3);
|
||||
|
||||
for(k = 0; k < 3; k++)
|
||||
{
|
||||
for(w = 0; w < 3; w++)
|
||||
{
|
||||
if(ii + k != i && jj + w != j && grid[ii+k][jj+w] == n)
|
||||
{
|
||||
for(k = 0; k < 9; k++)
|
||||
{
|
||||
if(k != j && grid[i][k] == n)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
for(k = 0; k < 9; k++)
|
||||
{
|
||||
if(k != i && grid[k][j] == n)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
ii = 3 * (i / 3);
|
||||
jj = 3 * (j / 3);
|
||||
|
||||
for(k = 0; k < 3; k++)
|
||||
{
|
||||
for(w = 0; w < 3; w++)
|
||||
{
|
||||
if(ii + k != i && jj + w != j && grid[ii+k][jj+w] == n)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int solve_recursive(int grid[][9], int step)
|
||||
{
|
||||
int i, j, k;
|
||||
int i, j, k;
|
||||
|
||||
if(step == 81)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
if(step == 81)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
i = step / 9;
|
||||
j = step % 9;
|
||||
i = step / 9;
|
||||
j = step % 9;
|
||||
|
||||
if(grid[i][j] != 0)
|
||||
{
|
||||
if(solve_recursive(grid, step+1))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(k = 1; k <= 9; k++)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
if(grid[i][j] != 0)
|
||||
{
|
||||
if(solve_recursive(grid, step+1))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(k = 1; k <= 9; k++)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
|
||||
if(check(grid, i, j, k))
|
||||
{
|
||||
if(solve_recursive(grid, step+1))
|
||||
if(check(grid, i, j, k))
|
||||
{
|
||||
return 1;
|
||||
if(solve_recursive(grid, step+1))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
}
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int line_complete(int grid[][9], int i)
|
||||
{
|
||||
int n;
|
||||
int n;
|
||||
|
||||
for(n = 0; n < 9; n++)
|
||||
{
|
||||
if(grid[i][n] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
for(n = 0; n < 9; n++)
|
||||
{
|
||||
if(grid[i][n] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int column_complete(int grid[][9], int j)
|
||||
{
|
||||
int n;
|
||||
int n;
|
||||
|
||||
for(n = 0; n < 9; n++)
|
||||
{
|
||||
if(grid[n][j] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
for(n = 0; n < 9; n++)
|
||||
{
|
||||
if(grid[n][j] == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int solve_sudoku(int grid[][9])
|
||||
{
|
||||
int i, j, k, w, count, val;
|
||||
int i, j, k, w, count, val;
|
||||
|
||||
for(w = 0; w < 4; w++)
|
||||
{
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
if(grid[i][j] == 0)
|
||||
for(w = 0; w < 4; w++)
|
||||
{
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
count = 0;
|
||||
|
||||
for(k = 1; k <= 9 && count < 2; k++)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
if(grid[i][j] == 0)
|
||||
{
|
||||
count = 0;
|
||||
|
||||
if(check(grid, i, j, k) == 1)
|
||||
{
|
||||
count++;
|
||||
val = k;
|
||||
}
|
||||
}
|
||||
for(k = 1; k <= 9 && count < 2; k++)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
|
||||
if(count == 1)
|
||||
{
|
||||
grid[i][j] = val;
|
||||
}
|
||||
else
|
||||
{
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
if(check(grid, i, j, k) == 1)
|
||||
{
|
||||
count++;
|
||||
val = k;
|
||||
}
|
||||
}
|
||||
|
||||
if(count == 1)
|
||||
{
|
||||
grid[i][j] = val;
|
||||
}
|
||||
else
|
||||
{
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
for(k = 1; k <= 9 && !line_complete(grid, i); k++)
|
||||
{
|
||||
count = 0;
|
||||
|
||||
for(j = 0; j < 9 && count < 2; j++)
|
||||
for(i = 0; i < 9; i++)
|
||||
{
|
||||
for(k = 1; k <= 9 && !line_complete(grid, i); k++)
|
||||
{
|
||||
if(grid[i][j] == 0)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
count = 0;
|
||||
|
||||
if(check(grid, i, j, k))
|
||||
{
|
||||
count++;
|
||||
val = j;
|
||||
}
|
||||
for(j = 0; j < 9 && count < 2; j++)
|
||||
{
|
||||
if(grid[i][j] == 0)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
if(check(grid, i, j, k))
|
||||
{
|
||||
count++;
|
||||
val = j;
|
||||
}
|
||||
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if(count == 1)
|
||||
{
|
||||
grid[i][val] = k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(count == 1)
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
for(k = 1; k <= 9 && !column_complete(grid, j); k++)
|
||||
{
|
||||
grid[i][val] = k;
|
||||
count = 0;
|
||||
|
||||
for(i = 0; i < 9 && count < 2; i++)
|
||||
{
|
||||
if(grid[i][j] == 0)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
|
||||
if(check(grid, i, j, k))
|
||||
{
|
||||
count++;
|
||||
val = i;
|
||||
}
|
||||
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if(count == 1)
|
||||
{
|
||||
grid[val][j] = k;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
for(k = 1; k <= 9 && !column_complete(grid, j); k++)
|
||||
{
|
||||
count = 0;
|
||||
|
||||
for(i = 0; i < 9 && count < 2; i++)
|
||||
{
|
||||
if(grid[i][j] == 0)
|
||||
{
|
||||
grid[i][j] = k;
|
||||
|
||||
if(check(grid, i, j, k))
|
||||
{
|
||||
count++;
|
||||
val = i;
|
||||
}
|
||||
|
||||
grid[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if(count == 1)
|
||||
{
|
||||
grid[val][j] = k;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return solve_recursive(grid, 0);
|
||||
return solve_recursive(grid, 0);
|
||||
}
|
||||
|
52
C/p097.c
52
C/p097.c
@ -5,44 +5,46 @@
|
||||
*
|
||||
* Find the last ten digits of this prime number.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int b = 2, e = 7830457, e_first;
|
||||
long int m = 10000000000, c, result;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int b = 2, e = 7830457, e_first;
|
||||
long int m = 10000000000, c, result;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Using modular exponentiation algorithm to calculate 2^7830457. The algorithm is:
|
||||
* Set c=1, e'=0
|
||||
* Increment e' by 1
|
||||
* Set c=b*c%m, where b is the base (2) and m is the modulo (10000000000 since
|
||||
* we want the last 10 digits.
|
||||
* If e'<e (where e is the exponent), repeat step 3, otherwise c contains the result.*/
|
||||
c = 1;
|
||||
e_first = 0;
|
||||
/* Using modular exponentiation algorithm to calculate 2^7830457. The algorithm is:
|
||||
* Set c=1, e'=0
|
||||
* Increment e' by 1
|
||||
* Set c=b*c%m, where b is the base (2) and m is the modulo (10000000000 since
|
||||
* we want the last 10 digits.
|
||||
* If e'<e (where e is the exponent), repeat step 3, otherwise c contains the result.*/
|
||||
c = 1;
|
||||
e_first = 0;
|
||||
|
||||
while(e_first < e)
|
||||
{
|
||||
e_first++;
|
||||
c = (b * c) % m;
|
||||
}
|
||||
while(e_first < e)
|
||||
{
|
||||
e_first++;
|
||||
c = (b * c) % m;
|
||||
}
|
||||
|
||||
result = (c * 28433 + 1) % m;
|
||||
result = (c * 28433 + 1) % m;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 97\n");
|
||||
printf("Answer: %ld\n", result);
|
||||
printf("Project Euler, Problem 97\n");
|
||||
printf("Answer: %ld\n", result);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
72
C/p099.c
72
C/p099.c
@ -1,13 +1,15 @@
|
||||
/* Comparing two numbers written in index form like 2^11 and 3^7 is not difficult, as any calculator would confirm that
|
||||
/* Comparing two numbers written in index form like 2^11 and 3^7 is not difficult, as any calculator would confirm that
|
||||
* 2^11 = 2048 < 3^7 = 2187.
|
||||
*
|
||||
* However, confirming that 632382^518061 > 519432^525806 would be much more difficult, as both numbers contain over three million digits.
|
||||
*
|
||||
* Using base_exp.txt, a 22K text file containing one thousand lines with a base/exponent pair on each line,
|
||||
* Using base_exp.txt, a 22K text file containing one thousand lines with a base/exponent pair on each line,
|
||||
* determine which line number has the greatest numerical value.
|
||||
*
|
||||
* NOTE: The first two lines in the file represent the numbers in the example given above.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -15,46 +17,46 @@
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, max_i = -1, base, exp;
|
||||
double curr, max = 0, elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
int i, max_i = -1, base, exp;
|
||||
double curr, max = 0, elapsed;
|
||||
struct timespec start, end;
|
||||
FILE *fp;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("base_exp.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "base_exp.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("base_exp.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "base_exp.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 1; i <= 1000; i++)
|
||||
{
|
||||
fscanf(fp, "%d,%d", &base, &exp);
|
||||
/* If
|
||||
* a^x > b^y
|
||||
* log(a^x) > log(b^y)
|
||||
* x*log(a) > y*log(b).
|
||||
* So for each b^e, calculate e*log(b) and compare these numbers instead.*/
|
||||
curr = exp * log(base);
|
||||
for(i = 1; i <= 1000; i++)
|
||||
{
|
||||
fscanf(fp, "%d,%d", &base, &exp);
|
||||
/* If
|
||||
* a^x > b^y
|
||||
* log(a^x) > log(b^y)
|
||||
* x*log(a) > y*log(b).
|
||||
* So for each b^e, calculate e*log(b) and compare these numbers instead.*/
|
||||
curr = exp * log(base);
|
||||
|
||||
if(curr > max)
|
||||
{
|
||||
max = curr;
|
||||
max_i = i;
|
||||
}
|
||||
}
|
||||
if(curr > max)
|
||||
{
|
||||
max = curr;
|
||||
max_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
fclose(fp);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 99\n");
|
||||
printf("Answer: %d\n", max_i);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 99\n");
|
||||
printf("Answer: %d\n", max_i);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
70
C/p102.c
70
C/p102.c
@ -12,6 +12,8 @@
|
||||
*
|
||||
* NOTE: The first two examples in the file represent the triangles in the example given above.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -19,51 +21,51 @@
|
||||
|
||||
typedef struct point
|
||||
{
|
||||
int x;
|
||||
int y;
|
||||
}point;
|
||||
int x;
|
||||
int y;
|
||||
} point;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int count = 0;
|
||||
FILE *fp;
|
||||
point p1, p2, p3;
|
||||
double a, b, c, elapsed;
|
||||
struct timespec start, end;
|
||||
int count = 0;
|
||||
FILE *fp;
|
||||
point p1, p2, p3;
|
||||
double a, b, c, elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((fp = fopen("triangles.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "triangles.txt");
|
||||
return 1;
|
||||
}
|
||||
if((fp = fopen("triangles.txt", "r")) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while opening file %s\n", "triangles.txt");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Using the barycentric coordinates method to determine if (0, 0) is inside the triangles.*/
|
||||
while(fscanf(fp, "%d,%d,%d,%d,%d,%d", &p1.x, &p1.y, &p2.x, &p2.y, &p3.x, &p3.y) != EOF)
|
||||
{
|
||||
a = (double)((p2.y - p3.y) * (-p3.x) + (p3.x - p2.x) * (-p3.y)) /
|
||||
((p2.y - p3.y) * (p1.x - p3.x) + (p3.x - p2.x) * (p1.y - p3.y));
|
||||
b = (double)((p3.y - p1.y) * (-p3.x) + (p1.x - p3.x) * (-p3.y)) /
|
||||
((p2.y - p3.y) * (p1.x - p3.x) + (p3.x - p2.x) * (p1.y - p3.y));
|
||||
c = 1 - a - b;
|
||||
/* Using the barycentric coordinates method to determine if (0, 0) is inside the triangles.*/
|
||||
while(fscanf(fp, "%d,%d,%d,%d,%d,%d", &p1.x, &p1.y, &p2.x, &p2.y, &p3.x, &p3.y) != EOF)
|
||||
{
|
||||
a = (double)((p2.y - p3.y) * (-p3.x) + (p3.x - p2.x) * (-p3.y)) /
|
||||
((p2.y - p3.y) * (p1.x - p3.x) + (p3.x - p2.x) * (p1.y - p3.y));
|
||||
b = (double)((p3.y - p1.y) * (-p3.x) + (p1.x - p3.x) * (-p3.y)) /
|
||||
((p2.y - p3.y) * (p1.x - p3.x) + (p3.x - p2.x) * (p1.y - p3.y));
|
||||
c = 1 - a - b;
|
||||
|
||||
if(a >= 0 && a <= 1 && b >= 0 && b <= 1 && c >= 0 && c <= 1)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
if(a >= 0 && a <= 1 && b >= 0 && b <= 1 && c >= 0 && c <= 1)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
fclose(fp);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 102\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 102\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
154
C/p104.c
154
C/p104.c
@ -7,6 +7,8 @@
|
||||
*
|
||||
* Given that F_k is the first Fibonacci number for which the first nine digits AND the last nine digits are 1-9 pandigital, find k.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -17,101 +19,101 @@ void fib_calc(mpz_t fib, int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
unsigned int i = 2, j, fib1 = 1, fib2 = 1, fibn, fib_int, found = 0;
|
||||
char *fib_str;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t fib;
|
||||
unsigned int i = 2, j, fib1 = 1, fib2 = 1, fibn, fib_int, found = 0;
|
||||
char *fib_str;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
mpz_t fib;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
mpz_init(fib);
|
||||
mpz_init(fib);
|
||||
|
||||
while(!found)
|
||||
{
|
||||
/* Calculate the next Fibonacci number modulo 10^9 and check if the result is 1-9 pandigital.*/
|
||||
fibn = (fib1 + fib2) % 1000000000;
|
||||
fib1 = fib2;
|
||||
fib2 = fibn;
|
||||
i++;
|
||||
|
||||
/* If the last 9 digits of fib_n are pandigital, calculate the ith Fibonacci number using
|
||||
* the matrix representation.*/
|
||||
if(is_pandigital(fibn, 9))
|
||||
{
|
||||
fib_calc(fib, i);
|
||||
fib_str = mpz_get_str(NULL, 10, fib);
|
||||
while(!found)
|
||||
{
|
||||
/* Calculate the next Fibonacci number modulo 10^9 and check if the result is 1-9 pandigital.*/
|
||||
fibn = (fib1 + fib2) % 1000000000;
|
||||
fib1 = fib2;
|
||||
fib2 = fibn;
|
||||
i++;
|
||||
|
||||
fib_int = 0;
|
||||
/* If the last 9 digits of fib_n are pandigital, calculate the ith Fibonacci number using
|
||||
* the matrix representation.*/
|
||||
if(is_pandigital(fibn, 9))
|
||||
{
|
||||
fib_calc(fib, i);
|
||||
fib_str = mpz_get_str(NULL, 10, fib);
|
||||
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
fib_int *= 10;
|
||||
fib_int += fib_str[j] - '0';
|
||||
}
|
||||
fib_int = 0;
|
||||
|
||||
if(is_pandigital(fib_int, 9))
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
for(j = 0; j < 9; j++)
|
||||
{
|
||||
fib_int *= 10;
|
||||
fib_int += fib_str[j] - '0';
|
||||
}
|
||||
|
||||
free(fib_str);
|
||||
}
|
||||
}
|
||||
if(is_pandigital(fib_int, 9))
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
|
||||
mpz_clear(fib);
|
||||
free(fib_str);
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
mpz_clear(fib);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Project Euler, Problem 104\n");
|
||||
printf("Answer: %d\n", i);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Project Euler, Problem 104\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
return 0;
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void fib_calc(mpz_t fib, int n)
|
||||
{
|
||||
int i;
|
||||
mpz_t tmp, tmp00, tmp01, tmp10, tmp11;
|
||||
mpz_t fib_matrix_base[2][2], fib_matrix[2][2];
|
||||
int i;
|
||||
mpz_t tmp, tmp00, tmp01, tmp10, tmp11;
|
||||
mpz_t fib_matrix_base[2][2], fib_matrix[2][2];
|
||||
|
||||
mpz_init_set_ui(fib_matrix_base[0][0], 1);
|
||||
mpz_init_set_ui(fib_matrix_base[0][1], 1);
|
||||
mpz_init_set_ui(fib_matrix_base[1][0], 1);
|
||||
mpz_init_set_ui(fib_matrix_base[1][1], 0);
|
||||
mpz_init_set_ui(fib_matrix[0][0], 1);
|
||||
mpz_init_set_ui(fib_matrix[0][1], 1);
|
||||
mpz_init_set_ui(fib_matrix[1][0], 1);
|
||||
mpz_init_set_ui(fib_matrix[1][1], 0);
|
||||
mpz_inits(tmp, tmp00, tmp01, tmp10, tmp11, NULL);
|
||||
mpz_init_set_ui(fib_matrix_base[0][0], 1);
|
||||
mpz_init_set_ui(fib_matrix_base[0][1], 1);
|
||||
mpz_init_set_ui(fib_matrix_base[1][0], 1);
|
||||
mpz_init_set_ui(fib_matrix_base[1][1], 0);
|
||||
mpz_init_set_ui(fib_matrix[0][0], 1);
|
||||
mpz_init_set_ui(fib_matrix[0][1], 1);
|
||||
mpz_init_set_ui(fib_matrix[1][0], 1);
|
||||
mpz_init_set_ui(fib_matrix[1][1], 0);
|
||||
mpz_inits(tmp, tmp00, tmp01, tmp10, tmp11, NULL);
|
||||
|
||||
for(i = 0; i < n - 1; i++)
|
||||
{
|
||||
mpz_mul(tmp00, fib_matrix[0][0], fib_matrix_base[0][0]);
|
||||
mpz_mul(tmp, fib_matrix[0][1], fib_matrix_base[1][0]);
|
||||
mpz_add(tmp00, tmp00, tmp);
|
||||
mpz_mul(tmp01, fib_matrix[0][0], fib_matrix_base[0][1]);
|
||||
mpz_mul(tmp, fib_matrix[0][1], fib_matrix_base[1][1]);
|
||||
mpz_add(tmp01, tmp01, tmp);
|
||||
mpz_mul(tmp10, fib_matrix[1][0], fib_matrix_base[0][0]);
|
||||
mpz_mul(tmp, fib_matrix[1][1], fib_matrix_base[1][0]);
|
||||
mpz_add(tmp10, tmp10, tmp);
|
||||
mpz_mul(tmp11, fib_matrix[1][0], fib_matrix_base[0][1]);
|
||||
mpz_mul(tmp, fib_matrix[1][1], fib_matrix_base[1][1]);
|
||||
mpz_add(tmp11, tmp11, tmp);
|
||||
mpz_set(fib_matrix[0][0], tmp00);
|
||||
mpz_set(fib_matrix[0][1], tmp01);
|
||||
mpz_set(fib_matrix[1][0], tmp10);
|
||||
mpz_set(fib_matrix[1][1], tmp11);
|
||||
}
|
||||
for(i = 0; i < n - 1; i++)
|
||||
{
|
||||
mpz_mul(tmp00, fib_matrix[0][0], fib_matrix_base[0][0]);
|
||||
mpz_mul(tmp, fib_matrix[0][1], fib_matrix_base[1][0]);
|
||||
mpz_add(tmp00, tmp00, tmp);
|
||||
mpz_mul(tmp01, fib_matrix[0][0], fib_matrix_base[0][1]);
|
||||
mpz_mul(tmp, fib_matrix[0][1], fib_matrix_base[1][1]);
|
||||
mpz_add(tmp01, tmp01, tmp);
|
||||
mpz_mul(tmp10, fib_matrix[1][0], fib_matrix_base[0][0]);
|
||||
mpz_mul(tmp, fib_matrix[1][1], fib_matrix_base[1][0]);
|
||||
mpz_add(tmp10, tmp10, tmp);
|
||||
mpz_mul(tmp11, fib_matrix[1][0], fib_matrix_base[0][1]);
|
||||
mpz_mul(tmp, fib_matrix[1][1], fib_matrix_base[1][1]);
|
||||
mpz_add(tmp11, tmp11, tmp);
|
||||
mpz_set(fib_matrix[0][0], tmp00);
|
||||
mpz_set(fib_matrix[0][1], tmp01);
|
||||
mpz_set(fib_matrix[1][0], tmp10);
|
||||
mpz_set(fib_matrix[1][1], tmp11);
|
||||
}
|
||||
|
||||
mpz_set(fib, fib_matrix[0][1]);
|
||||
mpz_set(fib, fib_matrix[0][1]);
|
||||
|
||||
mpz_clears(tmp, tmp00, tmp01, tmp10, tmp11, fib_matrix_base[0][0],
|
||||
fib_matrix_base[0][1], fib_matrix_base[1][0], fib_matrix_base[1][1],
|
||||
fib_matrix[0][0], fib_matrix[1][0], fib_matrix[1][1], NULL);
|
||||
mpz_clears(tmp, tmp00, tmp01, tmp10, tmp11, fib_matrix_base[0][0],
|
||||
fib_matrix_base[0][1], fib_matrix_base[1][0], fib_matrix_base[1][1],
|
||||
fib_matrix[0][0], fib_matrix[1][0], fib_matrix[1][1], NULL);
|
||||
}
|
||||
|
130
C/p112.c
130
C/p112.c
@ -11,6 +11,8 @@
|
||||
*
|
||||
* Find the least number for which the proportion of bouncy numbers is exactly 99%.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -20,88 +22,88 @@ int is_bouncy(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i = 100, n_bouncy = 0;
|
||||
double ratio = 0.0, elapsed;
|
||||
struct timespec start, end;
|
||||
int i = 100, n_bouncy = 0;
|
||||
double ratio = 0.0, elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
while(1)
|
||||
{
|
||||
if(is_bouncy(i))
|
||||
{
|
||||
n_bouncy++;
|
||||
}
|
||||
while(1)
|
||||
{
|
||||
if(is_bouncy(i))
|
||||
{
|
||||
n_bouncy++;
|
||||
}
|
||||
|
||||
ratio = (double)n_bouncy / i;
|
||||
|
||||
if(ratio == 0.99)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
ratio = (double)n_bouncy / i;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
if(ratio == 0.99)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
i++;
|
||||
}
|
||||
|
||||
printf("Project Euler, Problem 112\n");
|
||||
printf("Answer: %d\n", i);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
return 0;
|
||||
printf("Project Euler, Problem 112\n");
|
||||
printf("Answer: %d\n", i);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Check if the number is bouncy.*/
|
||||
int is_bouncy(int n)
|
||||
{
|
||||
int i = 0, l;
|
||||
char n_string[100];
|
||||
int i = 0, l;
|
||||
char n_string[100];
|
||||
|
||||
sprintf(n_string, "%d", n);
|
||||
sprintf(n_string, "%d", n);
|
||||
|
||||
l = strlen(n_string);
|
||||
l = strlen(n_string);
|
||||
|
||||
/* Ignore consecutive equal digits.*/
|
||||
while(i < l - 1 && n_string[i] == n_string[i+1])
|
||||
{
|
||||
i++;
|
||||
}
|
||||
/* Ignore consecutive equal digits.*/
|
||||
while(i < l - 1 && n_string[i] == n_string[i+1])
|
||||
{
|
||||
i++;
|
||||
}
|
||||
|
||||
/* If all the digits are the same, the number is not bouncy.*/
|
||||
if(i == l - 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
/* If all the digits are the same, the number is not bouncy.*/
|
||||
if(i == l - 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* If the first two different digits are increasing, if a successive
|
||||
* digit smaller than the previous digit is found, the number is bouncy.*/
|
||||
if(n_string[i] < n_string[i+1])
|
||||
{
|
||||
for(; i < l - 1; i++)
|
||||
{
|
||||
if(n_string[i] > n_string[i+1])
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If the first two different digits are increasing, if a successive
|
||||
* digit smaller than the previous digit is found, the number is bouncy.*/
|
||||
if(n_string[i] < n_string[i+1])
|
||||
{
|
||||
for(; i < l - 1; i++)
|
||||
{
|
||||
if(n_string[i] > n_string[i+1])
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If the first two different digits are decreasing, if a successive
|
||||
* digit larger than the previous digit is found, the number is bouncy.*/
|
||||
if(n_string[i] > n_string[i+1])
|
||||
{
|
||||
for(; i < l - 1; i++)
|
||||
{
|
||||
if(n_string[i] < n_string[i+1])
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If the first two different digits are decreasing, if a successive
|
||||
* digit larger than the previous digit is found, the number is bouncy.*/
|
||||
if(n_string[i] > n_string[i+1])
|
||||
{
|
||||
for(; i < l - 1; i++)
|
||||
{
|
||||
if(n_string[i] < n_string[i+1])
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
104
C/p124.c
104
C/p124.c
@ -2,7 +2,7 @@
|
||||
*
|
||||
* If we calculate rad(n) for 1 ≤ n ≤ 10, then sort them on rad(n), and sorting on n if the radical values are equal, we get:
|
||||
*
|
||||
* Unsorted Sorted
|
||||
* Unsorted Sorted
|
||||
* n rad(n) n rad(n) k
|
||||
* 1 1 1 1 1
|
||||
* 2 2 2 2 2
|
||||
@ -19,6 +19,8 @@
|
||||
*
|
||||
* If rad(n) is sorted for 1 ≤ n ≤ 100000, find E(10000).*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
@ -29,77 +31,77 @@
|
||||
|
||||
typedef struct n_rad
|
||||
{
|
||||
int n;
|
||||
int radn;
|
||||
}n_radn;
|
||||
int n;
|
||||
int radn;
|
||||
} n_radn;
|
||||
|
||||
int compare(void *a, void *b);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, *primes;
|
||||
n_radn **rads;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, *primes;
|
||||
n_radn **rads;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
if((primes = sieve(N)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error! Sieve function returned NULL\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if((rads = (n_radn **)malloc(N*sizeof(n_radn *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
if((rads = (n_radn **)malloc(N*sizeof(n_radn *))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
if((rads[i] = (n_radn *)malloc(sizeof(n_radn))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
if((rads[i] = (n_radn *)malloc(sizeof(n_radn))) == NULL)
|
||||
{
|
||||
fprintf(stderr, "Error while allocating memory\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
rads[i]->n = i + 1;
|
||||
rads[i]->radn = radical(i+1, primes);
|
||||
}
|
||||
for(i = 0; i < N; i++)
|
||||
{
|
||||
rads[i]->n = i + 1;
|
||||
rads[i]->radn = radical(i+1, primes);
|
||||
}
|
||||
|
||||
free(primes);
|
||||
free(primes);
|
||||
|
||||
quick_sort((void **)rads, 0, N-1, compare);
|
||||
quick_sort((void **)rads, 0, N-1, compare);
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 124\n");
|
||||
printf("Answer: %d\n", rads[9999]->n);
|
||||
printf("Project Euler, Problem 124\n");
|
||||
printf("Answer: %d\n", rads[9999]->n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compare(void *a, void *b)
|
||||
{
|
||||
n_radn *rad1, *rad2;
|
||||
n_radn *rad1, *rad2;
|
||||
|
||||
rad1 = (n_radn *)a;
|
||||
rad2 = (n_radn *)b;
|
||||
rad1 = (n_radn *)a;
|
||||
rad2 = (n_radn *)b;
|
||||
|
||||
if(rad1->radn != rad2->radn)
|
||||
{
|
||||
return rad1->radn - rad2->radn;
|
||||
}
|
||||
else
|
||||
{
|
||||
return rad1->n - rad2->n;
|
||||
}
|
||||
if(rad1->radn != rad2->radn)
|
||||
{
|
||||
return rad1->radn - rad2->radn;
|
||||
}
|
||||
else
|
||||
{
|
||||
return rad1->n - rad2->n;
|
||||
}
|
||||
}
|
||||
|
76
C/p145.c
76
C/p145.c
@ -6,6 +6,8 @@
|
||||
*
|
||||
* How many reversible numbers are there below one-billion (109)?*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -16,58 +18,58 @@ int reverse(int n);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, s, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, s, count = 0;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Brute force approach, sum each number and their reverse and
|
||||
* check if there are only odd digits.*/
|
||||
for(i = 11; i < N; i++)
|
||||
{
|
||||
if(i % 10 != 0)
|
||||
{
|
||||
s = i + reverse(i);
|
||||
/* Brute force approach, sum each number and their reverse and
|
||||
* check if there are only odd digits.*/
|
||||
for(i = 11; i < N; i++)
|
||||
{
|
||||
if(i % 10 != 0)
|
||||
{
|
||||
s = i + reverse(i);
|
||||
|
||||
while(s > 0)
|
||||
{
|
||||
if((s % 10) % 2 == 0)
|
||||
while(s > 0)
|
||||
{
|
||||
break;
|
||||
if((s % 10) % 2 == 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
s /= 10;
|
||||
}
|
||||
s /= 10;
|
||||
}
|
||||
|
||||
if(s == 0)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(s == 0)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 145\n");
|
||||
printf("Answer: %d\n", count);
|
||||
printf("Project Euler, Problem 145\n");
|
||||
printf("Answer: %d\n", count);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int reverse(int n)
|
||||
{
|
||||
int reverse = 0;
|
||||
int reverse = 0;
|
||||
|
||||
while(n > 0)
|
||||
{
|
||||
reverse *= 10;
|
||||
reverse += n % 10;
|
||||
n /= 10;
|
||||
}
|
||||
while(n > 0)
|
||||
{
|
||||
reverse *= 10;
|
||||
reverse += n % 10;
|
||||
n /= 10;
|
||||
}
|
||||
|
||||
return reverse;
|
||||
return reverse;
|
||||
}
|
||||
|
80
C/p206.c
80
C/p206.c
@ -1,60 +1,62 @@
|
||||
/* Find the unique positive integer whose square has the form 1_2_3_4_5_6_7_8_9_0,
|
||||
* where each “_” is a single digit.*/
|
||||
|
||||
#define _POSIX_C_SOURCE 199309L
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i, found = 0;
|
||||
/* Since the square of n has 19 digits, n must be at least 10^9.*/
|
||||
long int n = 1e9, p;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
int i, found = 0;
|
||||
/* Since the square of n has 19 digits, n must be at least 10^9.*/
|
||||
long int n = 1e9, p;
|
||||
double elapsed;
|
||||
struct timespec start, end;
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
while(!found)
|
||||
{
|
||||
/* If the square on n ends with 10, n must be divisible by 10.*/
|
||||
n += 10;
|
||||
p = n * n;
|
||||
while(!found)
|
||||
{
|
||||
/* If the square on n ends with 10, n must be divisible by 10.*/
|
||||
n += 10;
|
||||
p = n * n;
|
||||
|
||||
/* A square divisible by 10 is also divisible by 100.*/
|
||||
if(p % 100 != 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
/* A square divisible by 10 is also divisible by 100.*/
|
||||
if(p % 100 != 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Check if the digits of the square correspond to the given pattern.*/
|
||||
i = 9;
|
||||
p /= 100;
|
||||
/* Check if the digits of the square correspond to the given pattern.*/
|
||||
i = 9;
|
||||
p /= 100;
|
||||
|
||||
while(p > 0)
|
||||
{
|
||||
if(p % 10 != i)
|
||||
{
|
||||
break;
|
||||
}
|
||||
p /= 100;
|
||||
i--;
|
||||
}
|
||||
while(p > 0)
|
||||
{
|
||||
if(p % 10 != i)
|
||||
{
|
||||
break;
|
||||
}
|
||||
p /= 100;
|
||||
i--;
|
||||
}
|
||||
|
||||
if(p == 0)
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
if(p == 0)
|
||||
{
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
elapsed = (end.tv_sec - start.tv_sec) + (double)(end.tv_nsec - start.tv_nsec) / 1000000000;
|
||||
|
||||
printf("Project Euler, Problem 206\n");
|
||||
printf("Answer: %ld\n", n);
|
||||
printf("Project Euler, Problem 206\n");
|
||||
printf("Answer: %ld\n", n);
|
||||
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
printf("Elapsed time: %.9lf seconds\n", elapsed);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user