Add Haskell solution for Problem 12
This commit is contained in:
parent
dcf2d68b0e
commit
f98154f647
@ -2,9 +2,11 @@ module ProjectEuler
|
||||
( isPrime
|
||||
, digitSum
|
||||
, sumProperDivisors
|
||||
, countDivisors
|
||||
) where
|
||||
|
||||
import Data.Char (digitToInt)
|
||||
import Data.List (nub)
|
||||
|
||||
isPrime :: (Integral n) => n -> Bool
|
||||
isPrime 1 = False
|
||||
@ -22,3 +24,9 @@ digitSum n = sum $ map digitToInt $ show n
|
||||
|
||||
sumProperDivisors :: (Integral a) => a -> a
|
||||
sumProperDivisors n = sum [ if x /= y then x + y else x | x <- [2..ceiling $ sqrt $ fromIntegral n], let y = n `div` x, n `mod` x == 0 ] + 1
|
||||
|
||||
|
||||
countDivisors :: (Integral a) => a -> Int
|
||||
countDivisors n = length $ nub $ concat [ [x, n `div` x] | x <- [1..limit], n `mod` x == 0 ]
|
||||
where limit = floor $ sqrt $ fromIntegral n
|
||||
|
||||
|
33
Haskell/p012.hs
Normal file
33
Haskell/p012.hs
Normal file
@ -0,0 +1,33 @@
|
||||
-- The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.
|
||||
-- The first ten terms would be:
|
||||
--
|
||||
-- 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
--
|
||||
-- Let us list the factors of the first seven triangle numbers:
|
||||
--
|
||||
-- 1: 1
|
||||
-- 3: 1,3
|
||||
-- 6: 1,2,3,6
|
||||
-- 10: 1,2,5,10
|
||||
-- 15: 1,3,5,15
|
||||
-- 21: 1,3,7,21
|
||||
-- 28: 1,2,4,7,14,28
|
||||
--
|
||||
-- We can see that 28 is the first triangle number to have over five divisors.
|
||||
--
|
||||
-- What is the value of the first triangle number to have over five hundred divisors?
|
||||
|
||||
import Data.List (nub)
|
||||
|
||||
import ProjectEuler (countDivisors)
|
||||
|
||||
triangNumbers :: [Int]
|
||||
triangNumbers = scanl1 (+) [1..]
|
||||
|
||||
triang500 :: Int
|
||||
triang500 = head [ x | x <- triangNumbers, countDivisors x > 500 ]
|
||||
|
||||
main = do
|
||||
let result = triang500
|
||||
putStrLn $ "Project Euler, Problem 12\n"
|
||||
++ "Answer: " ++ (show result)
|
Loading…
x
Reference in New Issue
Block a user