Use same conventions for variables names

This commit is contained in:
daniele 2024-09-29 15:27:22 +02:00
parent 5ed4a6d9be
commit d943c32ea3
Signed by: fuxino
GPG Key ID: 981A2B2A3BBF5514
12 changed files with 41 additions and 41 deletions

View File

@ -9,16 +9,16 @@ from projecteuler import timing
@timing
def p001() -> None:
sum_ = 0
_sum = 0
# Simple brute-force approach: try every number between 3 and 999,
# check if it's a multiple of 3 or 5, if yes add it to the total.
for i in range(3, 1000):
if i % 3 == 0 or i % 5 == 0:
sum_ += i
_sum += i
print('Project Euler, Problem 1')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -16,20 +16,20 @@ def p002() -> None:
fib1 = 1
fib2 = 2
fibn = fib1 + fib2
sum_ = 2
_sum = 2
# Simple brute-force approach: generate every value in the Fibonacci
# sequence smaller than 4 million and if it's even add it to the total.
while fibn < N:
if fibn % 2 == 0:
sum_ = sum_ + fibn
_sum = _sum + fibn
fib1 = fib2
fib2 = fibn
fibn = fib1 + fib2
print('Project Euler, Problem 2')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -9,7 +9,7 @@ from projecteuler import is_palindrome, timing
@timing
def p004() -> None:
max_ = 0
_max = 0
# Using a brute-force approach: generate every product of 3-digit numbers
# and check if it's palindrome. If the product found is greater than the
@ -18,11 +18,11 @@ def p004() -> None:
for j in range(i, 99, -1):
num = i * j
# Use the function defined in projecteuler.py to check if a number is palindrome.
if num > max_ and is_palindrome(num, 10):
max_ = num
if num > _max and is_palindrome(num, 10):
_max = num
print('Project Euler, Problem 4')
print(f'Answer: {max_}')
print(f'Answer: {_max}')
if __name__ == '__main__':

View File

@ -14,15 +14,15 @@ def p010() -> None:
# Use the function in projecteuler.py implementing the
# Sieve of Eratosthenes algorithm to generate primes.
primes = sieve(N)
sum_ = 0
_sum = 0
# Sum all the primes
for i in range(N):
if primes[i] == 1:
sum_ = sum_ + i
_sum = _sum + i
print('Project Euler, Problem 10')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -53,7 +53,7 @@ def p011() -> None:
[20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54],
[1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]]
max_ = 0
_max = 0
# Brute-force approach: for each number in the grid, try products with its three
# adjacent numbers in every direction (horizontal, vertical and the two diagonals).
@ -67,7 +67,7 @@ def p011() -> None:
prod = prod * grid[i][k]
k = k + 1
max_ = max(max_, prod)
_max = max(_max, prod)
# Vertical direction.
prod = 1
@ -76,7 +76,7 @@ def p011() -> None:
prod = prod * grid[k][j]
k = k + 1
max_ = max(max_, prod)
_max = max(_max, prod)
# Diagonal direction, from top left to bottom right.
prod = 1
@ -88,7 +88,7 @@ def p011() -> None:
k = k + 1
w = w + 1
max_ = max(max_, prod)
_max = max(_max, prod)
# The last diagonal is handled separately
for i in range(17):
@ -103,10 +103,10 @@ def p011() -> None:
k = k + 1
w = w - 1
max_ = max(max_, prod)
_max = max(_max, prod)
print('Project Euler, Problem 11')
print(f'Answer: {max_}')
print(f'Answer: {_max}')
if __name__ == '__main__':

View File

@ -214,10 +214,10 @@ def p013() -> None:
# Convert the list of numbers in a numpy array and calculate the sum
numbers = np.array(numbers)
sum_ = str(numbers.sum())
_sum = str(numbers.sum())
print('Project Euler, Problem 13')
print(f'Answer: {sum_[:10]}')
print(f'Answer: {_sum[:10]}')
if __name__ == '__main__':

View File

@ -47,7 +47,7 @@ def collatz_length(n: int) -> int:
@timing
def p014() -> None:
max_l = 0
max_ = 0
_max = 0
# For each number from 1 to 1000000, find the length of the sequence
# and save its value, so that it can be used for the next numbers.
@ -57,10 +57,10 @@ def p014() -> None:
if count > max_l:
max_l = count
max_ = i
_max = i
print('Project Euler, Problem 14')
print(f'Answer: {max_}')
print(f'Answer: {_max}')
if __name__ == '__main__':

View File

@ -13,13 +13,13 @@ def p016() -> None:
# the sum of the digits
res = str(2 ** 1000)
sum_ = 0
_sum = 0
for i in res:
sum_ = sum_ + int(i)
_sum = _sum + int(i)
print('Project Euler, Problem 16')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -21,11 +21,11 @@ def p017() -> None:
[13, 13, 15, 14, 14, 13, 15, 15, 14],
[11]]
sum_ = 0
_sum = 0
# Sum the letters of the first 19 numbers.
for i in range(19):
sum_ = sum_ + n_letters[0][i]
_sum = _sum + n_letters[0][i]
# Add the letters of the numbers from 20 to 99.
for i in range(8):
@ -37,7 +37,7 @@ def p017() -> None:
for j in range(9):
n_letters[1][i] = n_letters[1][i] + n_letters[0][j]
sum_ = sum_ + n_letters[1][i]
_sum = _sum + n_letters[1][i]
# Add the letters of the numbers from 100 to 999.
for i in range(9):
@ -52,13 +52,13 @@ def p017() -> None:
n_letters[2][i] = n_letters[2][i] + n_letters[1][j]
# "One hundred", "two hundred", ... don't have the "and", so remove
# three letters for each of them.
sum_ = sum_ + n_letters[2][i] - 3
_sum = _sum + n_letters[2][i] - 3
# Add "one thousand".
sum_ = sum_ + n_letters[3][0]
_sum = _sum + n_letters[3][0]
print('Project Euler, Problem 17')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -53,10 +53,10 @@ def p018() -> None:
triang[i] = list(map(int, triang[i]))
# Use the function implemented in projecteuler.c to find the maximum path.
max_ = find_max_path(triang, 15)
_max = find_max_path(triang, 15)
print('Project Euler, Problem 18')
print(f'Answer: {max_}')
print(f'Answer: {_max}')
if __name__ == '__main__':

View File

@ -17,13 +17,13 @@ def p020() -> None:
# Calculate the factorial, convert the result to string and sum the digits.
n = str(factorial(100))
sum_ = 0
_sum = 0
for i in n:
sum_ = sum_ + int(i)
_sum = _sum + int(i)
print('Project Euler, Problem 20')
print(f'Answer: {sum_}')
print(f'Answer: {_sum}')
if __name__ == '__main__':

View File

@ -500,12 +500,12 @@ def dijkstra(matrix: List[List[int]], distances: List[List[int]], m: int, n: int
if j > 0 and distances[i][j] + matrix[i][j-1] < distances[i][j-1]:
distances[i][j-1] = distances[i][j] + matrix[i][j-1]
min_ = 999999999
_min = 999999999
for i in range(m):
for j in range(n):
if not visited[i][j] and distances[i][j] <= min_:
min_ = distances[i][j]
if not visited[i][j] and distances[i][j] <= _min:
_min = distances[i][j]
min_i = i
min_j = j