Fix code style
This commit is contained in:
parent
f827fd5dd6
commit
cc90c8aa0c
@ -9,26 +9,26 @@ from numpy import zeros
|
|||||||
|
|
||||||
def is_prime(num):
|
def is_prime(num):
|
||||||
if num < 4:
|
if num < 4:
|
||||||
# If num is 2 or 3 then it's prime.
|
# If num is 2 or 3 then it's prime.
|
||||||
return num == 2 or num == 3
|
return num == 2 or num == 3
|
||||||
|
|
||||||
# If num is divisible by 2 or 3 then it's not prime.
|
# If num is divisible by 2 or 3 then it's not prime.
|
||||||
if num % 2 == 0 or num % 3 == 0:
|
if num % 2 == 0 or num % 3 == 0:
|
||||||
return False
|
return False
|
||||||
# Any number can have only one prime factor greater than its
|
# Any number can have only one prime factor greater than its
|
||||||
# square root. If we reach the square root and we haven't found
|
# square root. If we reach the square root and we haven't found
|
||||||
# any smaller prime factors, then the number is prime.
|
# any smaller prime factors, then the number is prime.
|
||||||
limit = floor(sqrt(num)) + 1
|
limit = floor(sqrt(num)) + 1
|
||||||
|
|
||||||
# Every prime other than 2 and 3 is in the form 6k+1 or 6k-1.
|
# Every prime other than 2 and 3 is in the form 6k+1 or 6k-1.
|
||||||
# If I check all those value no prime factors of the number
|
# If I check all those value no prime factors of the number
|
||||||
# will be missed. If a factor is found, the number is not prime
|
# will be missed. If a factor is found, the number is not prime
|
||||||
# and the function returns 0.
|
# and the function returns 0.
|
||||||
for i in range(5, limit, 6):
|
for i in range(5, limit, 6):
|
||||||
if num % i == 0 or num % (i + 2) == 0:
|
if num % i == 0 or num % (i + 2) == 0:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
# If no factor is found up to the square root of num, num is prime.
|
# If no factor is found up to the square root of num, num is prime.
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
@ -37,17 +37,17 @@ def is_palindrome(num, base):
|
|||||||
|
|
||||||
tmp = num
|
tmp = num
|
||||||
|
|
||||||
# Start with reverse=0, get the rightmost digit of the number using
|
# Start with reverse=0, get the rightmost digit of the number using
|
||||||
# modulo operation (num modulo base), add it to reverse. Remove the
|
# modulo operation (num modulo base), add it to reverse. Remove the
|
||||||
# rightmost digit from num dividing num by the base, shift the reverse left
|
# rightmost digit from num dividing num by the base, shift the reverse left
|
||||||
# multiplying by the base, repeat until all digits have been inserted
|
# multiplying by the base, repeat until all digits have been inserted
|
||||||
# in reverse order.
|
# in reverse order.
|
||||||
while tmp > 0:
|
while tmp > 0:
|
||||||
reverse = reverse * base
|
reverse = reverse * base
|
||||||
reverse = reverse + tmp % base
|
reverse = reverse + tmp % base
|
||||||
tmp = tmp // base
|
tmp = tmp // base
|
||||||
|
|
||||||
# If the reversed number is equal to the original one, then it's palindrome.
|
# If the reversed number is equal to the original one, then it's palindrome.
|
||||||
if num == reverse:
|
if num == reverse:
|
||||||
return True
|
return True
|
||||||
|
|
||||||
@ -61,41 +61,40 @@ def lcm(a, b):
|
|||||||
|
|
||||||
# Recursive function to calculate the least common multiple of more than 2 numbers.
|
# Recursive function to calculate the least common multiple of more than 2 numbers.
|
||||||
def lcmm(values, n):
|
def lcmm(values, n):
|
||||||
# If there are only two numbers, use the lcm function to calculate the lcm.
|
# If there are only two numbers, use the lcm function to calculate the lcm.
|
||||||
if n == 2:
|
if n == 2:
|
||||||
return lcm(values[0], values[1])
|
return lcm(values[0], values[1])
|
||||||
|
|
||||||
value = values[0]
|
value = values[0]
|
||||||
|
|
||||||
# Recursively calculate lcm(a, b, c, ..., n) = lcm(a, lcm(b, c, ..., n)).
|
# Recursively calculate lcm(a, b, c, ..., n) = lcm(a, lcm(b, c, ..., n)).
|
||||||
return lcm(value, lcmm(values[1:], n-1))
|
return lcm(value, lcmm(values[1:], n-1))
|
||||||
|
|
||||||
|
|
||||||
# Function implementing the Sieve or Eratosthenes to generate
|
# Function implementing the Sieve or Eratosthenes to generate primes up to a certain number.
|
||||||
# primes up to a certain number.
|
|
||||||
def sieve(n):
|
def sieve(n):
|
||||||
primes = [1] * n
|
primes = [1] * n
|
||||||
|
|
||||||
# 0 and 1 are not prime, 2 and 3 are prime.
|
# 0 and 1 are not prime, 2 and 3 are prime.
|
||||||
primes[0] = 0
|
primes[0] = 0
|
||||||
primes[1] = 0
|
primes[1] = 0
|
||||||
|
|
||||||
# Cross out (set to 0) all even numbers and set the odd numbers to 1 (possible prime).
|
# Cross out (set to 0) all even numbers and set the odd numbers to 1 (possible prime).
|
||||||
for i in range(4, n, 2):
|
for i in range(4, n, 2):
|
||||||
primes[i] = 0
|
primes[i] = 0
|
||||||
|
|
||||||
# If i is prime, all multiples of i smaller than i*i have already been crossed out.
|
# If i is prime, all multiples of i smaller than i*i have already been crossed out.
|
||||||
# if i=sqrt(n), all multiples of i up to n (the target) have been crossed out. So
|
# if i=sqrt(n), all multiples of i up to n (the target) have been crossed out. So
|
||||||
# there is no need check i>sqrt(n).
|
# there is no need check i>sqrt(n).
|
||||||
limit = floor(sqrt(n))
|
limit = floor(sqrt(n))
|
||||||
|
|
||||||
for i in range(3, limit, 2):
|
for i in range(3, limit, 2):
|
||||||
# Find the next number not crossed out, which is prime.
|
# Find the next number not crossed out, which is prime.
|
||||||
if primes[i] == 1:
|
if primes[i] == 1:
|
||||||
# Cross out all multiples of i, starting with i*i because any smaller multiple
|
# Cross out all multiples of i, starting with i*i because any smaller multiple
|
||||||
# of i has a smaller prime factor and has already been crossed out. Also, since
|
# of i has a smaller prime factor and has already been crossed out. Also, since
|
||||||
# i is odd, i*i+i is even and has already been crossed out, so multiples are
|
# i is odd, i*i+i is even and has already been crossed out, so multiples are
|
||||||
# crossed out with steps of 2*i.
|
# crossed out with steps of 2*i.
|
||||||
for j in range(i * i, n, 2 * i):
|
for j in range(i * i, n, 2 * i):
|
||||||
primes[j] = 0
|
primes[j] = 0
|
||||||
|
|
||||||
@ -104,10 +103,10 @@ def sieve(n):
|
|||||||
|
|
||||||
def count_divisors(n):
|
def count_divisors(n):
|
||||||
count = 0
|
count = 0
|
||||||
# For every divisor below the square root of n, there is a corresponding one
|
# For every divisor below the square root of n, there is a corresponding one
|
||||||
# above the square root, so it's sufficient to check up to the square root of n
|
# above the square root, so it's sufficient to check up to the square root of n
|
||||||
# and count every divisor twice. If n is a perfect square, the last divisor is
|
# and count every divisor twice. If n is a perfect square, the last divisor is
|
||||||
# wrongly counted twice and must be corrected.
|
# wrongly counted twice and must be corrected.
|
||||||
limit = floor(sqrt(n))
|
limit = floor(sqrt(n))
|
||||||
|
|
||||||
for i in range(1, limit):
|
for i in range(1, limit):
|
||||||
@ -121,11 +120,11 @@ def count_divisors(n):
|
|||||||
|
|
||||||
|
|
||||||
def find_max_path(triang, n):
|
def find_max_path(triang, n):
|
||||||
# Start from the second to last row and go up.
|
# Start from the second to last row and go up.
|
||||||
for i in range(n-2, -1, -1):
|
for i in range(n-2, -1, -1):
|
||||||
# For each element in the row, check the two adjacent elements
|
# For each element in the row, check the two adjacent elements
|
||||||
# in the row below and sum the larger one to it. At the end,
|
# in the row below and sum the larger one to it. At the end,
|
||||||
# the element at the top will contain the value of the maximum path.
|
# the element at the top will contain the value of the maximum path.
|
||||||
for j in range(0, i+1):
|
for j in range(0, i+1):
|
||||||
if triang[i+1][j] > triang[i+1][j+1]:
|
if triang[i+1][j] > triang[i+1][j+1]:
|
||||||
triang[i][j] = triang[i][j] + triang[i+1][j]
|
triang[i][j] = triang[i][j] + triang[i+1][j]
|
||||||
@ -136,11 +135,11 @@ def find_max_path(triang, n):
|
|||||||
|
|
||||||
|
|
||||||
def sum_of_divisors(n):
|
def sum_of_divisors(n):
|
||||||
# For each divisor of n smaller than the square root of n,
|
# For each divisor of n smaller than the square root of n,
|
||||||
# there is another one larger than the square root. If i is
|
# there is another one larger than the square root. If i is
|
||||||
# a divisor of n, so is n/i. Checking divisors i up to square
|
# a divisor of n, so is n/i. Checking divisors i up to square
|
||||||
# root of n and adding both i and n/i is sufficient to sum
|
# root of n and adding both i and n/i is sufficient to sum
|
||||||
# all divisors.
|
# all divisors.
|
||||||
limit = floor(sqrt(n)) + 1
|
limit = floor(sqrt(n)) + 1
|
||||||
|
|
||||||
sum_ = 1
|
sum_ = 1
|
||||||
@ -148,8 +147,7 @@ def sum_of_divisors(n):
|
|||||||
for i in range(2, limit):
|
for i in range(2, limit):
|
||||||
if n % i == 0:
|
if n % i == 0:
|
||||||
sum_ = sum_ + i
|
sum_ = sum_ + i
|
||||||
# If n is a perfect square, i=limit is a divisor and
|
# If n is a perfect square, i=limit is a divisor and has to be counted only once.
|
||||||
# has to be counted only once.
|
|
||||||
if n != i * i:
|
if n != i * i:
|
||||||
sum_ = sum_ + n // i
|
sum_ = sum_ + n // i
|
||||||
|
|
||||||
@ -183,8 +181,8 @@ def is_pandigital(value, n):
|
|||||||
|
|
||||||
|
|
||||||
def is_pentagonal(n):
|
def is_pentagonal(n):
|
||||||
# A number n is pentagonal if p=(sqrt(24n+1)+1)/6 is an integer.
|
# A number n is pentagonal if p=(sqrt(24n+1)+1)/6 is an integer.
|
||||||
# In this case, n is the pth pentagonal number.
|
# In this case, n is the pth pentagonal number.
|
||||||
i = (sqrt(24*n+1) + 1) / 6
|
i = (sqrt(24*n+1) + 1) / 6
|
||||||
|
|
||||||
return i.is_integer()
|
return i.is_integer()
|
||||||
@ -236,10 +234,10 @@ def build_sqrt_cont_fraction(i, l):
|
|||||||
# Function to solve the Diophantine equation in the form x^2-Dy^2=1
|
# Function to solve the Diophantine equation in the form x^2-Dy^2=1
|
||||||
# (Pell equation) using continued fractions.
|
# (Pell equation) using continued fractions.
|
||||||
def pell_eq(d):
|
def pell_eq(d):
|
||||||
# Find the continued fraction for sqrt(d).
|
# Find the continued fraction for sqrt(d).
|
||||||
fraction, _ = build_sqrt_cont_fraction(d, 100)
|
fraction, _ = build_sqrt_cont_fraction(d, 100)
|
||||||
|
|
||||||
# Calculate the first convergent of the continued fraction.
|
# Calculate the first convergent of the continued fraction.
|
||||||
n1 = 0
|
n1 = 0
|
||||||
n2 = 1
|
n2 = 1
|
||||||
d1 = 1
|
d1 = 1
|
||||||
@ -250,14 +248,14 @@ def pell_eq(d):
|
|||||||
d3 = fraction[j] * d2 + d1
|
d3 = fraction[j] * d2 + d1
|
||||||
j = j + 1
|
j = j + 1
|
||||||
|
|
||||||
# Check if x=n, y=d solve the equation x^2-Dy^2=1.
|
# Check if x=n, y=d solve the equation x^2-Dy^2=1.
|
||||||
sol = n3 * n3 - d * d3 * d3
|
sol = n3 * n3 - d * d3 * d3
|
||||||
|
|
||||||
if sol == 1:
|
if sol == 1:
|
||||||
return n3
|
return n3
|
||||||
|
|
||||||
# Until a solution is found, calculate the next convergent
|
# Until a solution is found, calculate the next convergent
|
||||||
# and check if x=n and y=d solve the equation.
|
# and check if x=n and y=d solve the equation.
|
||||||
while True:
|
while True:
|
||||||
n1 = n2
|
n1 = n2
|
||||||
n2 = n3
|
n2 = n3
|
||||||
@ -281,11 +279,11 @@ def pell_eq(d):
|
|||||||
# pointers to p and q to return the factors values and a list of
|
# pointers to p and q to return the factors values and a list of
|
||||||
# primes.
|
# primes.
|
||||||
def is_semiprime(n, primes):
|
def is_semiprime(n, primes):
|
||||||
# If n is prime, it's not semiprime.
|
# If n is prime, it's not semiprime.
|
||||||
if primes[n] == 1:
|
if primes[n] == 1:
|
||||||
return False, -1, -1
|
return False, -1, -1
|
||||||
|
|
||||||
# Check if n is semiprime and one of the factors is 2.
|
# Check if n is semiprime and one of the factors is 2.
|
||||||
if n % 2 == 0:
|
if n % 2 == 0:
|
||||||
if primes[n//2] == 1:
|
if primes[n//2] == 1:
|
||||||
p = 2
|
p = 2
|
||||||
@ -295,7 +293,7 @@ def is_semiprime(n, primes):
|
|||||||
|
|
||||||
return False, -1, -1
|
return False, -1, -1
|
||||||
|
|
||||||
# Check if n is semiprime and one of the factors is 3.
|
# Check if n is semiprime and one of the factors is 3.
|
||||||
elif n % 3 == 0:
|
elif n % 3 == 0:
|
||||||
if primes[n//3] == 1:
|
if primes[n//3] == 1:
|
||||||
p = 3
|
p = 3
|
||||||
@ -305,15 +303,15 @@ def is_semiprime(n, primes):
|
|||||||
|
|
||||||
return False, -1, -1
|
return False, -1, -1
|
||||||
|
|
||||||
# Any number can have only one prime factor greater than its
|
# Any number can have only one prime factor greater than its
|
||||||
# square root, so we can stop checking at this point.
|
# square root, so we can stop checking at this point.
|
||||||
limit = floor(sqrt(n)) + 1
|
limit = floor(sqrt(n)) + 1
|
||||||
|
|
||||||
# Every prime other than 2 and 3 is in the form 6k+1 or 6k-1.
|
# Every prime other than 2 and 3 is in the form 6k+1 or 6k-1.
|
||||||
# If I check all those value no prime factors of the number
|
# If I check all those value no prime factors of the number
|
||||||
# will be missed. For each of these possible primes, check if
|
# will be missed. For each of these possible primes, check if
|
||||||
# they are prime, then if the number is semiprime with using
|
# they are prime, then if the number is semiprime with using
|
||||||
# that factor.
|
# that factor.
|
||||||
for i in range(5, limit, 6):
|
for i in range(5, limit, 6):
|
||||||
if primes[i] == 1 and n % i == 0:
|
if primes[i] == 1 and n % i == 0:
|
||||||
if primes[n//i] == 1:
|
if primes[n//i] == 1:
|
||||||
@ -346,11 +344,11 @@ def phi_semiprime(n, p, q):
|
|||||||
|
|
||||||
|
|
||||||
def phi(n, primes):
|
def phi(n, primes):
|
||||||
# If n is primes, phi(n)=n-1.
|
# If n is primes, phi(n)=n-1.
|
||||||
if primes[n] == 1:
|
if primes[n] == 1:
|
||||||
return n - 1
|
return n - 1
|
||||||
|
|
||||||
# If n is semiprime, use above function.
|
# If n is semiprime, use above function.
|
||||||
semi_p, p, q = is_semiprime(n, primes)
|
semi_p, p, q = is_semiprime(n, primes)
|
||||||
|
|
||||||
if semi_p:
|
if semi_p:
|
||||||
@ -358,8 +356,8 @@ def phi(n, primes):
|
|||||||
|
|
||||||
ph = n
|
ph = n
|
||||||
|
|
||||||
# If 2 is a factor of n, multiply the current ph (which now is n)
|
# If 2 is a factor of n, multiply the current ph (which now is n)
|
||||||
# by 1-1/2, then divide all factors 2.
|
# by 1-1/2, then divide all factors 2.
|
||||||
if n % 2 == 0:
|
if n % 2 == 0:
|
||||||
ph = ph * (1 - 1 / 2)
|
ph = ph * (1 - 1 / 2)
|
||||||
|
|
||||||
@ -369,8 +367,7 @@ def phi(n, primes):
|
|||||||
if n % 2 != 0:
|
if n % 2 != 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
# If 3 is a factor of n, multiply the current ph by 1-1/3,
|
# If 3 is a factor of n, multiply the current ph by 1-1/3, then divide all factors 3.
|
||||||
# then divide all factors 3.
|
|
||||||
if n % 3 == 0:
|
if n % 3 == 0:
|
||||||
ph = ph * (1 - 1 / 3)
|
ph = ph * (1 - 1 / 3)
|
||||||
|
|
||||||
@ -380,16 +377,16 @@ def phi(n, primes):
|
|||||||
if n % 3 != 0:
|
if n % 3 != 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
# Any number can have only one prime factor greater than its
|
# Any number can have only one prime factor greater than its
|
||||||
# square root, so we can stop checking at this point and deal
|
# square root, so we can stop checking at this point and deal
|
||||||
# with the only factor larger than sqrt(n), if present, at the end
|
# with the only factor larger than sqrt(n), if present, at the end
|
||||||
limit = floor(sqrt(n)) + 1
|
limit = floor(sqrt(n)) + 1
|
||||||
|
|
||||||
# Every prime other than 2 and 3 is in the form 6k+1 or 6k-1.
|
# Every prime other than 2 and 3 is in the form 6k+1 or 6k-1.
|
||||||
# If I check all those value no prime factors of the number
|
# If I check all those value no prime factors of the number
|
||||||
# will be missed. For each of these possible primes, check if
|
# will be missed. For each of these possible primes, check if
|
||||||
# they are prime, then check if the number divides n, in which
|
# they are prime, then check if the number divides n, in which
|
||||||
# case update the current ph.
|
# case update the current ph.
|
||||||
for i in range(5, limit, 6):
|
for i in range(5, limit, 6):
|
||||||
if primes[i]:
|
if primes[i]:
|
||||||
if n % i == 0:
|
if n % i == 0:
|
||||||
@ -410,9 +407,9 @@ def phi(n, primes):
|
|||||||
if n % (i + 2) != 0:
|
if n % (i + 2) != 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
# After dividing all prime factors smaller than sqrt(n), n is either 1
|
# After dividing all prime factors smaller than sqrt(n), n is either 1
|
||||||
# or is equal to the only prime factor greater than sqrt(n). In this
|
# or is equal to the only prime factor greater than sqrt(n). In this
|
||||||
# second case, we need to update ph with the last prime factor.
|
# second case, we need to update ph with the last prime factor.
|
||||||
if n > 1:
|
if n > 1:
|
||||||
ph = ph * (1 - 1 / n)
|
ph = ph * (1 - 1 / n)
|
||||||
|
|
||||||
@ -421,16 +418,16 @@ def phi(n, primes):
|
|||||||
|
|
||||||
# Function implementing the partition function.
|
# Function implementing the partition function.
|
||||||
def partition_fn(n, partitions, mod=-1):
|
def partition_fn(n, partitions, mod=-1):
|
||||||
# The partition function for negative numbers is 0 by definition.
|
# The partition function for negative numbers is 0 by definition.
|
||||||
if n < 0:
|
if n < 0:
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
# The partition function for zero is 1 by definition.
|
# The partition function for zero is 1 by definition.
|
||||||
if n == 0:
|
if n == 0:
|
||||||
partitions[n] = 1
|
partitions[n] = 1
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
# If the partition for the current n has already been calculated, return the value.
|
# If the partition for the current n has already been calculated, return the value.
|
||||||
if partitions[n] != 0:
|
if partitions[n] != 0:
|
||||||
return partitions[n]
|
return partitions[n]
|
||||||
|
|
||||||
@ -443,7 +440,7 @@ def partition_fn(n, partitions, mod=-1):
|
|||||||
res = res + pow(-1, k+1) * partition_fn(n-k*(3*k-1)//2, partitions)
|
res = res + pow(-1, k+1) * partition_fn(n-k*(3*k-1)//2, partitions)
|
||||||
k = k + 1
|
k = k + 1
|
||||||
|
|
||||||
# Give the result modulo mod, if mod!=-1, otherwise give the full result.
|
# Give the result modulo mod, if mod!=-1, otherwise give the full result.
|
||||||
if mod != -1:
|
if mod != -1:
|
||||||
partitions[n] = res % mod
|
partitions[n] = res % mod
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user