Add comments

Added comments to code for problem 11 to 14
This commit is contained in:
daniele 2019-09-22 21:35:10 +02:00
parent dd628af770
commit c4b8566bb4
Signed by: fuxino
GPG Key ID: 6FE25B4A3EE16FDA
4 changed files with 156 additions and 5 deletions

View File

@ -70,7 +70,7 @@ int main(int argc, char **argv)
{
prod *= grid[i][k];
}
if(prod > max)
{
max = prod;
@ -102,7 +102,7 @@ int main(int argc, char **argv)
}
}
}
/* The last diagonal is handled separately.*/
for(i = 0; i < 17; i++)
{

View File

@ -1,3 +1,22 @@
/* The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.
* The first ten terms would be:
*
* 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
*
* Let us list the factors of the first seven triangle numbers:
*
* 1: 1
* 3: 1,3
* 6: 1,2,3,6
* 10: 1,2,5,10
* 15: 1,3,5,15
* 21: 1,3,7,21
* 28: 1,2,4,7,14,28
*
* We can see that 28 is the first triangle number to have over five divisors.
*
* What is the value of the first triangle number to have over five hundred divisors?*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
@ -11,10 +30,12 @@ int main(int argc, char **argv)
clock_gettime(CLOCK_MONOTONIC, &start);
/* Generate all triangle numbers until the first one with more than 500 divisors is found.*/
while(!finished)
{
i++;
triang += i;
/* Use the function implemented in projecteuler.c to count divisors of a number.*/
count = count_divisors(triang);
if(count > 500)

105
C/p013.c
View File

@ -1,3 +1,106 @@
/* Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
*
* 37107287533902102798797998220837590246510135740250
* 46376937677490009712648124896970078050417018260538
* 74324986199524741059474233309513058123726617309629
* 91942213363574161572522430563301811072406154908250
* 23067588207539346171171980310421047513778063246676
* 89261670696623633820136378418383684178734361726757
* 28112879812849979408065481931592621691275889832738
* 44274228917432520321923589422876796487670272189318
* 47451445736001306439091167216856844588711603153276
* 70386486105843025439939619828917593665686757934951
* 62176457141856560629502157223196586755079324193331
* 64906352462741904929101432445813822663347944758178
* 92575867718337217661963751590579239728245598838407
* 58203565325359399008402633568948830189458628227828
* 80181199384826282014278194139940567587151170094390
* 35398664372827112653829987240784473053190104293586
* 86515506006295864861532075273371959191420517255829
* 71693888707715466499115593487603532921714970056938
* 54370070576826684624621495650076471787294438377604
* 53282654108756828443191190634694037855217779295145
* 36123272525000296071075082563815656710885258350721
* 45876576172410976447339110607218265236877223636045
* 17423706905851860660448207621209813287860733969412
* 81142660418086830619328460811191061556940512689692
* 51934325451728388641918047049293215058642563049483
* 62467221648435076201727918039944693004732956340691
* 15732444386908125794514089057706229429197107928209
* 55037687525678773091862540744969844508330393682126
* 18336384825330154686196124348767681297534375946515
* 80386287592878490201521685554828717201219257766954
* 78182833757993103614740356856449095527097864797581
* 16726320100436897842553539920931837441497806860984
* 48403098129077791799088218795327364475675590848030
* 87086987551392711854517078544161852424320693150332
* 59959406895756536782107074926966537676326235447210
* 69793950679652694742597709739166693763042633987085
* 41052684708299085211399427365734116182760315001271
* 65378607361501080857009149939512557028198746004375
* 35829035317434717326932123578154982629742552737307
* 94953759765105305946966067683156574377167401875275
* 88902802571733229619176668713819931811048770190271
* 25267680276078003013678680992525463401061632866526
* 36270218540497705585629946580636237993140746255962
* 24074486908231174977792365466257246923322810917141
* 91430288197103288597806669760892938638285025333403
* 34413065578016127815921815005561868836468420090470
* 23053081172816430487623791969842487255036638784583
* 11487696932154902810424020138335124462181441773470
* 63783299490636259666498587618221225225512486764533
* 67720186971698544312419572409913959008952310058822
* 95548255300263520781532296796249481641953868218774
* 76085327132285723110424803456124867697064507995236
* 37774242535411291684276865538926205024910326572967
* 23701913275725675285653248258265463092207058596522
* 29798860272258331913126375147341994889534765745501
* 18495701454879288984856827726077713721403798879715
* 38298203783031473527721580348144513491373226651381
* 34829543829199918180278916522431027392251122869539
* 40957953066405232632538044100059654939159879593635
* 29746152185502371307642255121183693803580388584903
* 41698116222072977186158236678424689157993532961922
* 62467957194401269043877107275048102390895523597457
* 23189706772547915061505504953922979530901129967519
* 86188088225875314529584099251203829009407770775672
* 11306739708304724483816533873502340845647058077308
* 82959174767140363198008187129011875491310547126581
* 97623331044818386269515456334926366572897563400500
* 42846280183517070527831839425882145521227251250327
* 55121603546981200581762165212827652751691296897789
* 32238195734329339946437501907836945765883352399886
* 75506164965184775180738168837861091527357929701337
* 62177842752192623401942399639168044983993173312731
* 32924185707147349566916674687634660915035914677504
* 99518671430235219628894890102423325116913619626622
* 73267460800591547471830798392868535206946944540724
* 76841822524674417161514036427982273348055556214818
* 97142617910342598647204516893989422179826088076852
* 87783646182799346313767754307809363333018982642090
* 10848802521674670883215120185883543223812876952786
* 71329612474782464538636993009049310363619763878039
* 62184073572399794223406235393808339651327408011116
* 66627891981488087797941876876144230030984490851411
* 60661826293682836764744779239180335110989069790714
* 85786944089552990653640447425576083659976645795096
* 66024396409905389607120198219976047599490197230297
* 64913982680032973156037120041377903785566085089252
* 16730939319872750275468906903707539413042652315011
* 94809377245048795150954100921645863754710598436791
* 78639167021187492431995700641917969777599028300699
* 15368713711936614952811305876380278410754449733078
* 40789923115535562561142322423255033685442488917353
* 44889911501440648020369068063960672322193204149535
* 41503128880339536053299340368006977710650566631954
* 81234880673210146739058568557934581403627822703280
* 82616570773948327592232845941706525094512325230608
* 22918802058777319719839450180888072429661980811197
* 77158542502016545090413245809786882778948721859617
* 72107838435069186155435662884062257473692284509516
* 20849603980134001723930671666823555245252804609722
* 53503534226472524250874054075591789781264330331690*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
@ -63,6 +166,8 @@ int main(int argc, char **argv)
clock_gettime(CLOCK_MONOTONIC, &start);
/* Using the GNU Multiple Precision Arithmetic Library (GMP)
* to sum the numbers and get the first 10 digits of the sum.*/
mpz_inits(a, b, NULL);
mpz_set_str(a, n[0], 10);

View File

@ -1,10 +1,28 @@
/* The following iterative sequence is defined for the set of positive integers:
*
* n n/2 (n is even)
* n 3n + 1 (n is odd)
*
* Using the rule above and starting with 13, we generate the following sequence:
*
* 13 40 20 10 5 16 8 4 2 1
*
* It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem),
* it is thought that all starting numbers finish at 1.
*
* Which starting number, under one million, produces the longest chain?
*
* NOTE: Once the chain starts the terms are allowed to go above one million.*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 1000000
int collatz_length(long int n);
int collatz_found[1000000] = {0};
int collatz_found[N] = {0};
int main(int argc, char **argv)
{
@ -14,8 +32,10 @@ int main(int argc, char **argv)
clock_gettime(CLOCK_MONOTONIC, &start);
for(i = 1; i < 1000000; i++)
for(i = 1; i < N; i++)
{
/* For each number from 1 to 1000000, find the length of the sequence
* and save its value, so that it can be used for the next numbers.*/
count = collatz_length(i);
collatz_found[i] = count;
@ -38,12 +58,17 @@ int main(int argc, char **argv)
return 0;
}
/* Recursive function to calculate the Collatz sequence for n.
* If n is even, Collatz(n)=1+Collatz(n/2), if n is odd
* Collatz(n)=1+Collatz(3*n+1).*/
int collatz_length(long int n)
{
if(n == 1)
return 1;
if(n < 1000000 && collatz_found[n])
/* If Collatz(n) has been previously calculated,
* just return the value.*/
if(n < N && collatz_found[n])
return collatz_found[n];
if(n % 2 == 0)