Add comments
Added comments to code for problem 11 to 14
This commit is contained in:
parent
dd628af770
commit
c4b8566bb4
4
C/p011.c
4
C/p011.c
@ -70,7 +70,7 @@ int main(int argc, char **argv)
|
||||
{
|
||||
prod *= grid[i][k];
|
||||
}
|
||||
|
||||
|
||||
if(prod > max)
|
||||
{
|
||||
max = prod;
|
||||
@ -102,7 +102,7 @@ int main(int argc, char **argv)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* The last diagonal is handled separately.*/
|
||||
for(i = 0; i < 17; i++)
|
||||
{
|
||||
|
21
C/p012.c
21
C/p012.c
@ -1,3 +1,22 @@
|
||||
/* The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.
|
||||
* The first ten terms would be:
|
||||
*
|
||||
* 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
*
|
||||
* Let us list the factors of the first seven triangle numbers:
|
||||
*
|
||||
* 1: 1
|
||||
* 3: 1,3
|
||||
* 6: 1,2,3,6
|
||||
* 10: 1,2,5,10
|
||||
* 15: 1,3,5,15
|
||||
* 21: 1,3,7,21
|
||||
* 28: 1,2,4,7,14,28
|
||||
*
|
||||
* We can see that 28 is the first triangle number to have over five divisors.
|
||||
*
|
||||
* What is the value of the first triangle number to have over five hundred divisors?*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -11,10 +30,12 @@ int main(int argc, char **argv)
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Generate all triangle numbers until the first one with more than 500 divisors is found.*/
|
||||
while(!finished)
|
||||
{
|
||||
i++;
|
||||
triang += i;
|
||||
/* Use the function implemented in projecteuler.c to count divisors of a number.*/
|
||||
count = count_divisors(triang);
|
||||
|
||||
if(count > 500)
|
||||
|
105
C/p013.c
105
C/p013.c
@ -1,3 +1,106 @@
|
||||
/* Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
|
||||
*
|
||||
* 37107287533902102798797998220837590246510135740250
|
||||
* 46376937677490009712648124896970078050417018260538
|
||||
* 74324986199524741059474233309513058123726617309629
|
||||
* 91942213363574161572522430563301811072406154908250
|
||||
* 23067588207539346171171980310421047513778063246676
|
||||
* 89261670696623633820136378418383684178734361726757
|
||||
* 28112879812849979408065481931592621691275889832738
|
||||
* 44274228917432520321923589422876796487670272189318
|
||||
* 47451445736001306439091167216856844588711603153276
|
||||
* 70386486105843025439939619828917593665686757934951
|
||||
* 62176457141856560629502157223196586755079324193331
|
||||
* 64906352462741904929101432445813822663347944758178
|
||||
* 92575867718337217661963751590579239728245598838407
|
||||
* 58203565325359399008402633568948830189458628227828
|
||||
* 80181199384826282014278194139940567587151170094390
|
||||
* 35398664372827112653829987240784473053190104293586
|
||||
* 86515506006295864861532075273371959191420517255829
|
||||
* 71693888707715466499115593487603532921714970056938
|
||||
* 54370070576826684624621495650076471787294438377604
|
||||
* 53282654108756828443191190634694037855217779295145
|
||||
* 36123272525000296071075082563815656710885258350721
|
||||
* 45876576172410976447339110607218265236877223636045
|
||||
* 17423706905851860660448207621209813287860733969412
|
||||
* 81142660418086830619328460811191061556940512689692
|
||||
* 51934325451728388641918047049293215058642563049483
|
||||
* 62467221648435076201727918039944693004732956340691
|
||||
* 15732444386908125794514089057706229429197107928209
|
||||
* 55037687525678773091862540744969844508330393682126
|
||||
* 18336384825330154686196124348767681297534375946515
|
||||
* 80386287592878490201521685554828717201219257766954
|
||||
* 78182833757993103614740356856449095527097864797581
|
||||
* 16726320100436897842553539920931837441497806860984
|
||||
* 48403098129077791799088218795327364475675590848030
|
||||
* 87086987551392711854517078544161852424320693150332
|
||||
* 59959406895756536782107074926966537676326235447210
|
||||
* 69793950679652694742597709739166693763042633987085
|
||||
* 41052684708299085211399427365734116182760315001271
|
||||
* 65378607361501080857009149939512557028198746004375
|
||||
* 35829035317434717326932123578154982629742552737307
|
||||
* 94953759765105305946966067683156574377167401875275
|
||||
* 88902802571733229619176668713819931811048770190271
|
||||
* 25267680276078003013678680992525463401061632866526
|
||||
* 36270218540497705585629946580636237993140746255962
|
||||
* 24074486908231174977792365466257246923322810917141
|
||||
* 91430288197103288597806669760892938638285025333403
|
||||
* 34413065578016127815921815005561868836468420090470
|
||||
* 23053081172816430487623791969842487255036638784583
|
||||
* 11487696932154902810424020138335124462181441773470
|
||||
* 63783299490636259666498587618221225225512486764533
|
||||
* 67720186971698544312419572409913959008952310058822
|
||||
* 95548255300263520781532296796249481641953868218774
|
||||
* 76085327132285723110424803456124867697064507995236
|
||||
* 37774242535411291684276865538926205024910326572967
|
||||
* 23701913275725675285653248258265463092207058596522
|
||||
* 29798860272258331913126375147341994889534765745501
|
||||
* 18495701454879288984856827726077713721403798879715
|
||||
* 38298203783031473527721580348144513491373226651381
|
||||
* 34829543829199918180278916522431027392251122869539
|
||||
* 40957953066405232632538044100059654939159879593635
|
||||
* 29746152185502371307642255121183693803580388584903
|
||||
* 41698116222072977186158236678424689157993532961922
|
||||
* 62467957194401269043877107275048102390895523597457
|
||||
* 23189706772547915061505504953922979530901129967519
|
||||
* 86188088225875314529584099251203829009407770775672
|
||||
* 11306739708304724483816533873502340845647058077308
|
||||
* 82959174767140363198008187129011875491310547126581
|
||||
* 97623331044818386269515456334926366572897563400500
|
||||
* 42846280183517070527831839425882145521227251250327
|
||||
* 55121603546981200581762165212827652751691296897789
|
||||
* 32238195734329339946437501907836945765883352399886
|
||||
* 75506164965184775180738168837861091527357929701337
|
||||
* 62177842752192623401942399639168044983993173312731
|
||||
* 32924185707147349566916674687634660915035914677504
|
||||
* 99518671430235219628894890102423325116913619626622
|
||||
* 73267460800591547471830798392868535206946944540724
|
||||
* 76841822524674417161514036427982273348055556214818
|
||||
* 97142617910342598647204516893989422179826088076852
|
||||
* 87783646182799346313767754307809363333018982642090
|
||||
* 10848802521674670883215120185883543223812876952786
|
||||
* 71329612474782464538636993009049310363619763878039
|
||||
* 62184073572399794223406235393808339651327408011116
|
||||
* 66627891981488087797941876876144230030984490851411
|
||||
* 60661826293682836764744779239180335110989069790714
|
||||
* 85786944089552990653640447425576083659976645795096
|
||||
* 66024396409905389607120198219976047599490197230297
|
||||
* 64913982680032973156037120041377903785566085089252
|
||||
* 16730939319872750275468906903707539413042652315011
|
||||
* 94809377245048795150954100921645863754710598436791
|
||||
* 78639167021187492431995700641917969777599028300699
|
||||
* 15368713711936614952811305876380278410754449733078
|
||||
* 40789923115535562561142322423255033685442488917353
|
||||
* 44889911501440648020369068063960672322193204149535
|
||||
* 41503128880339536053299340368006977710650566631954
|
||||
* 81234880673210146739058568557934581403627822703280
|
||||
* 82616570773948327592232845941706525094512325230608
|
||||
* 22918802058777319719839450180888072429661980811197
|
||||
* 77158542502016545090413245809786882778948721859617
|
||||
* 72107838435069186155435662884062257473692284509516
|
||||
* 20849603980134001723930671666823555245252804609722
|
||||
* 53503534226472524250874054075591789781264330331690*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
@ -63,6 +166,8 @@ int main(int argc, char **argv)
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
/* Using the GNU Multiple Precision Arithmetic Library (GMP)
|
||||
* to sum the numbers and get the first 10 digits of the sum.*/
|
||||
mpz_inits(a, b, NULL);
|
||||
mpz_set_str(a, n[0], 10);
|
||||
|
||||
|
31
C/p014.c
31
C/p014.c
@ -1,10 +1,28 @@
|
||||
/* The following iterative sequence is defined for the set of positive integers:
|
||||
*
|
||||
* n → n/2 (n is even)
|
||||
* n → 3n + 1 (n is odd)
|
||||
*
|
||||
* Using the rule above and starting with 13, we generate the following sequence:
|
||||
*
|
||||
* 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
|
||||
*
|
||||
* It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem),
|
||||
* it is thought that all starting numbers finish at 1.
|
||||
*
|
||||
* Which starting number, under one million, produces the longest chain?
|
||||
*
|
||||
* NOTE: Once the chain starts the terms are allowed to go above one million.*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
#define N 1000000
|
||||
|
||||
int collatz_length(long int n);
|
||||
|
||||
int collatz_found[1000000] = {0};
|
||||
int collatz_found[N] = {0};
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
@ -14,8 +32,10 @@ int main(int argc, char **argv)
|
||||
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
|
||||
for(i = 1; i < 1000000; i++)
|
||||
for(i = 1; i < N; i++)
|
||||
{
|
||||
/* For each number from 1 to 1000000, find the length of the sequence
|
||||
* and save its value, so that it can be used for the next numbers.*/
|
||||
count = collatz_length(i);
|
||||
collatz_found[i] = count;
|
||||
|
||||
@ -38,12 +58,17 @@ int main(int argc, char **argv)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Recursive function to calculate the Collatz sequence for n.
|
||||
* If n is even, Collatz(n)=1+Collatz(n/2), if n is odd
|
||||
* Collatz(n)=1+Collatz(3*n+1).*/
|
||||
int collatz_length(long int n)
|
||||
{
|
||||
if(n == 1)
|
||||
return 1;
|
||||
|
||||
if(n < 1000000 && collatz_found[n])
|
||||
/* If Collatz(n) has been previously calculated,
|
||||
* just return the value.*/
|
||||
if(n < N && collatz_found[n])
|
||||
return collatz_found[n];
|
||||
|
||||
if(n % 2 == 0)
|
||||
|
Loading…
x
Reference in New Issue
Block a user