Use timing decorator for problems 21-40
This commit is contained in:
parent
634eb3f750
commit
be5e97dfbb
@ -9,20 +9,18 @@
|
||||
# Evaluate the sum of all the amicable numbers under 10000.
|
||||
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import sum_of_divisors
|
||||
from projecteuler import sum_of_divisors, timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p021():
|
||||
sum_ = 0
|
||||
|
||||
for i in range(2, 10000):
|
||||
# Calculate the sum of proper divisors with the function
|
||||
# implemented in projecteuler.py.
|
||||
n = sum_of_divisors(i)
|
||||
|
||||
# If i!=n and the sum of proper divisors of n=i,
|
||||
# sum the pair of numbers and add it to the total.
|
||||
if i != n and sum_of_divisors(n) == i:
|
||||
@ -30,13 +28,9 @@ def main():
|
||||
|
||||
sum_ = sum_ // 2
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 21')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p021()
|
||||
|
@ -9,12 +9,12 @@
|
||||
# What is the total of all the name scores in the file?
|
||||
|
||||
import sys
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p022():
|
||||
try:
|
||||
with open('p022_names.txt', 'r', encoding='utf-8') as fp:
|
||||
names = list(fp.readline().replace('"', '').split(','))
|
||||
@ -37,13 +37,9 @@ def main():
|
||||
sum_ = sum_ + score
|
||||
i = i + 1
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 22')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p022()
|
||||
|
@ -12,18 +12,15 @@
|
||||
#
|
||||
# Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import sum_of_divisors
|
||||
from projecteuler import sum_of_divisors, timing
|
||||
|
||||
|
||||
def is_abundant(n):
|
||||
return sum_of_divisors(n) > n
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p023():
|
||||
ab_nums = [False] * 28124
|
||||
|
||||
# Find all abundant numbers smaller than 28123.
|
||||
@ -50,13 +47,9 @@ def main():
|
||||
if not sums[i]:
|
||||
sum_ = sum_ + i
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 23')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p023()
|
||||
|
@ -8,23 +8,19 @@
|
||||
# What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
|
||||
|
||||
from itertools import permutations
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p024():
|
||||
# Generate all the permutations in lexicographic order and get the millionth one.
|
||||
perm = list(permutations('0123456789'))
|
||||
res = int(''.join(map(str, perm[999999])))
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 24')
|
||||
print(f'Answer: {res}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p024()
|
||||
|
@ -21,12 +21,11 @@
|
||||
#
|
||||
# What is the index of the first term in the Fibonacci sequence to contain 1000 digits?
|
||||
|
||||
from timeit import default_timer
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p025():
|
||||
fib1 = 1
|
||||
fib2 = 1
|
||||
fibn = fib1 + fib2
|
||||
@ -40,13 +39,9 @@ def main():
|
||||
fibn = fib1 + fib2
|
||||
i = i + 1
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 25')
|
||||
print(f'Answer: {i}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p025()
|
||||
|
@ -16,27 +16,24 @@
|
||||
#
|
||||
# Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
|
||||
|
||||
from timeit import default_timer
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p026():
|
||||
max_ = 0
|
||||
|
||||
for i in range(2, 1000):
|
||||
j = i
|
||||
|
||||
# The repeating cycle of 1/(2^a*5^b*p^c*...) is equal to
|
||||
# that of 1/p^c*..., so factors 2 and 5 can be eliminated.
|
||||
# The repeating cycle of 1/(2^a*5^b*p^c*...) is equal to that of 1/p^c*..., so factors 2 and 5 can be eliminated.
|
||||
while j % 2 == 0 and j > 1:
|
||||
j = j // 2
|
||||
|
||||
while j % 5 == 0 and j > 1:
|
||||
j = j // 5
|
||||
|
||||
# If the denominator had only factors 2 and 5, there is no
|
||||
# repeating cycle.
|
||||
# If the denominator had only factors 2 and 5, there is no repeating cycle.
|
||||
if j == 1:
|
||||
n = 0
|
||||
else:
|
||||
@ -57,13 +54,9 @@ def main():
|
||||
max_ = n
|
||||
max_n = i
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 26')
|
||||
print(f'Answer: {max_n}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p026()
|
||||
|
@ -19,14 +19,11 @@
|
||||
#
|
||||
# Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import is_prime
|
||||
from projecteuler import is_prime, timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p027():
|
||||
max_ = 0
|
||||
|
||||
# Brute force approach, optimized by checking only values of b where b is prime.
|
||||
@ -51,13 +48,9 @@ def main():
|
||||
save_a = a
|
||||
save_b = b
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 27')
|
||||
print(f'Answer: {save_a * save_b}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p027()
|
||||
|
@ -12,12 +12,11 @@
|
||||
#
|
||||
# What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?
|
||||
|
||||
from timeit import default_timer
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p028():
|
||||
N = 1001
|
||||
|
||||
limit = N * N
|
||||
@ -38,13 +37,9 @@ def main():
|
||||
sum_ = sum_ + j
|
||||
i = (i + 1) % 4
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 28')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p028()
|
||||
|
@ -13,14 +13,13 @@
|
||||
#
|
||||
# How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from numpy import zeros
|
||||
|
||||
from projecteuler import timing
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p029():
|
||||
powers = zeros(9801)
|
||||
|
||||
# Generate all the powers
|
||||
@ -39,13 +38,9 @@ def main():
|
||||
if powers[i] != powers[i-1]:
|
||||
count = count + 1
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 29')
|
||||
print(f'Answer: {count}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p029()
|
||||
|
@ -12,12 +12,11 @@
|
||||
#
|
||||
# Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.
|
||||
|
||||
from timeit import default_timer
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p030():
|
||||
tot = 0
|
||||
|
||||
# Straightforward brute force approach. The limit is chosen considering that
|
||||
@ -35,13 +34,9 @@ def main():
|
||||
if sum_ == i:
|
||||
tot = tot + i
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 30')
|
||||
print(f'Answer: {tot}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p030()
|
||||
|
@ -10,7 +10,7 @@
|
||||
#
|
||||
# How many different ways can £2 be made using any number of coins?
|
||||
|
||||
from timeit import default_timer
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
# Simple recursive function that tries every combination.
|
||||
@ -29,20 +29,15 @@ def count(coins, value, n, i):
|
||||
return n
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p031():
|
||||
coins = [1, 2, 5, 10, 20, 50, 100, 200]
|
||||
|
||||
n = count(coins, 0, 0, 0)
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 31')
|
||||
print(f'Answer: {n}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p031()
|
||||
|
@ -9,17 +9,14 @@
|
||||
#
|
||||
# HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
import numpy as np
|
||||
from numpy import zeros
|
||||
|
||||
from projecteuler import is_pandigital
|
||||
from projecteuler import is_pandigital, timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p032():
|
||||
n = 0
|
||||
# Initially I used a bigger array, but printing the resulting products
|
||||
# shows that 10 values are sufficient.
|
||||
@ -79,13 +76,9 @@ def main():
|
||||
if products[i] != products[i-1]:
|
||||
sum_ = sum_ + products[i]
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 32')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p032()
|
||||
|
@ -11,12 +11,12 @@
|
||||
# If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
|
||||
|
||||
from math import gcd
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p033():
|
||||
prod_n = 1
|
||||
prod_d = 1
|
||||
|
||||
@ -39,13 +39,9 @@ def main():
|
||||
# Find the greater common divisor of the fraction found.
|
||||
div = gcd(prod_n, prod_d)
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 33')
|
||||
print(f'Answer: {prod_d // div}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p033()
|
||||
|
@ -7,14 +7,14 @@
|
||||
# Note: as 1! = 1 and 2! = 2 are not sums they are not included.
|
||||
|
||||
from math import factorial
|
||||
from timeit import default_timer
|
||||
|
||||
from numpy import ones
|
||||
|
||||
from projecteuler import timing
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p034():
|
||||
a = 10
|
||||
sum_ = 0
|
||||
factorials = ones(10, int)
|
||||
@ -38,13 +38,9 @@ def main():
|
||||
|
||||
a = a + 1
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 34')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p034()
|
||||
|
@ -6,9 +6,7 @@
|
||||
#
|
||||
# How many circular primes are there below one million?
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import sieve
|
||||
from projecteuler import sieve, timing
|
||||
|
||||
|
||||
# Calculate all primes below one million, then check if they're circular.
|
||||
@ -47,9 +45,8 @@ def is_circular_prime(n):
|
||||
return True
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p035():
|
||||
count = 13
|
||||
|
||||
# Calculate all primes below one million, then check if they're circular.
|
||||
@ -57,13 +54,9 @@ def main():
|
||||
if is_circular_prime(i):
|
||||
count = count + 1
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 35')
|
||||
print(f'Answer: {count}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p035()
|
||||
|
@ -6,14 +6,11 @@
|
||||
#
|
||||
# (Please note that the palindromic number, in either base, may not include leading zeros.)
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import is_palindrome
|
||||
from projecteuler import is_palindrome, timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p036():
|
||||
N = 1000000
|
||||
|
||||
sum_ = 0
|
||||
@ -25,13 +22,9 @@ def main():
|
||||
if is_palindrome(i, 10) and is_palindrome(i, 2):
|
||||
sum_ = sum_ + i
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 36')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p036()
|
||||
|
@ -7,9 +7,7 @@
|
||||
#
|
||||
# NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import is_prime
|
||||
from projecteuler import is_prime, timing
|
||||
|
||||
|
||||
def is_tr_prime(n):
|
||||
@ -27,8 +25,7 @@ def is_tr_prime(n):
|
||||
return False
|
||||
tmp = tmp // 10
|
||||
|
||||
# Starting from the last digit, check if it's prime, then
|
||||
# add back one digit at a time on the left and check if it
|
||||
# Starting from the last digit, check if it's prime, then add back one digit at a time on the left and check if it
|
||||
# is prime. Return 0 when it isn't.
|
||||
i = 10
|
||||
tmp = n % i
|
||||
@ -43,9 +40,8 @@ def is_tr_prime(n):
|
||||
return True
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p037():
|
||||
i = 0
|
||||
n = 1
|
||||
sum_ = 0
|
||||
@ -57,13 +53,9 @@ def main():
|
||||
i = i + 1
|
||||
n = n + 1
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 37')
|
||||
print(f'Answer: {sum_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p037()
|
||||
|
@ -13,14 +13,11 @@
|
||||
#
|
||||
# What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from projecteuler import is_pandigital
|
||||
from projecteuler import is_pandigital, timing
|
||||
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p038():
|
||||
max_ = 0
|
||||
|
||||
# A brute force approach is used, starting with 1 and multiplying
|
||||
@ -54,13 +51,9 @@ def main():
|
||||
if n > 987654321:
|
||||
break
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 38')
|
||||
print(f'Answer: {max_}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p038()
|
||||
|
@ -6,14 +6,13 @@
|
||||
#
|
||||
# For which value of p ≤ 1000, is the number of solutions maximised?
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from numpy import zeros
|
||||
|
||||
from projecteuler import timing
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p039():
|
||||
max_ = 0
|
||||
savedc = zeros(1000, int)
|
||||
|
||||
@ -32,8 +31,7 @@ def main():
|
||||
b = 2 * m * n
|
||||
c = m * m + n * n
|
||||
|
||||
# Increase counter if a+b+c=p and the triplet is new,
|
||||
# then save the value of c to avoid counting the same
|
||||
# Increase counter if a+b+c=p and the triplet is new, then save the value of c to avoid counting the same
|
||||
# triplet more than once.
|
||||
if a + b + c == p and savedc[c] == 0:
|
||||
savedc[c] = 1
|
||||
@ -44,8 +42,7 @@ def main():
|
||||
tmpb = b
|
||||
tmpc = c
|
||||
|
||||
# Check all the triplets obtained multiplying a, b and c
|
||||
# for integer numbers, until the perimeters exceeds p.
|
||||
# Check all the triplets obtained multiplying a, b and c for integer numbers, until the perimeters exceeds p.
|
||||
while tmpa + tmpb + tmpc < p:
|
||||
tmpa = a * i
|
||||
tmpb = b * i
|
||||
@ -66,13 +63,9 @@ def main():
|
||||
max_ = count
|
||||
res = p
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 39')
|
||||
print(f'Answer: {res}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p039()
|
||||
|
@ -10,14 +10,13 @@
|
||||
#
|
||||
# d_1 × d_10 × d_100 × d_1000 × d_10000 × d_100000 × d_1000000
|
||||
|
||||
from timeit import default_timer
|
||||
|
||||
from numpy import zeros
|
||||
|
||||
from projecteuler import timing
|
||||
|
||||
def main():
|
||||
start = default_timer()
|
||||
|
||||
@timing
|
||||
def p040():
|
||||
digits = zeros(1000005, int)
|
||||
i = 1
|
||||
value = 1
|
||||
@ -64,13 +63,9 @@ def main():
|
||||
# Calculate the product.
|
||||
n = digits[0] * digits[9] * digits[99] * digits[999] * digits[9999] * digits[99999] * digits[999999]
|
||||
|
||||
end = default_timer()
|
||||
|
||||
print('Project Euler, Problem 40')
|
||||
print(f'Answer: {n}')
|
||||
|
||||
print(f'Elapsed time: {end - start:.9f} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
p040()
|
||||
|
Loading…
x
Reference in New Issue
Block a user