Add type hints to projecteuler.py

This commit is contained in:
daniele 2024-09-29 14:32:18 +02:00
parent b6b10cdd12
commit b3643b2f28
Signed by: fuxino
GPG Key ID: 981A2B2A3BBF5514

@ -1,5 +1,6 @@
#!/usr/bin/env python3
from typing import Callable, List, ParamSpec, Tuple, TypeVar
from functools import wraps
from math import sqrt, floor, ceil, gcd
from timeit import default_timer
@ -7,7 +8,25 @@ from timeit import default_timer
from numpy import zeros
def is_prime(num):
P = ParamSpec('P')
R = TypeVar('R')
def timing(f: Callable[P, R]) -> Callable[P, R]:
@wraps(f)
def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
start = default_timer()
result = f(*args, **kwargs)
end = default_timer()
print(f'{f.__name__!r} took {end - start:.9f} seconds')
return result
return wrapper
def is_prime(num: int) -> bool:
if num < 4:
# If num is 2 or 3 then it's prime.
return num in (2, 3)
@ -31,7 +50,7 @@ def is_prime(num):
return True
def is_palindrome(num, base=10):
def is_palindrome(num: int, base: int = 10) -> bool:
reverse = 0
tmp = num
@ -54,12 +73,12 @@ def is_palindrome(num, base=10):
# Least common multiple algorithm using the greatest common divisor.
def lcm(a, b):
def lcm(a: int , b: int) -> int:
return a * b // gcd(a, b)
# Recursive function to calculate the least common multiple of more than 2 numbers.
def lcmm(values, n):
def lcmm(values: List[int], n: int) -> int:
# If there are only two numbers, use the lcm function to calculate the lcm.
if n == 2:
return lcm(values[0], values[1])
@ -71,7 +90,7 @@ def lcmm(values, n):
# Function implementing the Sieve or Eratosthenes to generate primes up to a certain number.
def sieve(n):
def sieve(n: int) -> List[int]:
primes = [1] * (n + 1)
# 0 and 1 are not prime, 2 and 3 are prime.
@ -100,7 +119,7 @@ def sieve(n):
return primes
def count_divisors(n):
def count_divisors(n: int) -> int:
count = 0
# For every divisor below the square root of n, there is a corresponding one
# above the square root, so it's sufficient to check up to the square root of n
@ -118,7 +137,7 @@ def count_divisors(n):
return count
def find_max_path(triang, n):
def find_max_path(triang: List[List[int]], n: int) -> int:
# Start from the second to last row and go up.
for i in range(n-2, -1, -1):
# For each element in the row, check the two adjacent elements
@ -133,7 +152,7 @@ def find_max_path(triang, n):
return triang[0][0]
def sum_of_divisors(n):
def sum_of_divisors(n: int) -> int:
# For each divisor of n smaller than the square root of n,
# there is another one larger than the square root. If i is
# a divisor of n, so is n/i. Checking divisors i up to square
@ -141,20 +160,20 @@ def sum_of_divisors(n):
# all divisors.
limit = floor(sqrt(n)) + 1
sum_ = 1
_sum = 1
for i in range(2, limit):
if n % i == 0:
sum_ += i
_sum += i
# If n is a perfect square, i=limit is a divisor and has to be counted only once.
if n != i * i:
sum_ = sum_ + n // i
_sum = _sum + n // i
return sum_
return _sum
def is_pandigital(value, n):
def is_pandigital(value: int, n: int) -> bool:
i = 0
digits = [0] * (n + 1)
@ -180,7 +199,7 @@ def is_pandigital(value, n):
return True
def is_pentagonal(n):
def is_pentagonal(n: int) -> bool:
# A number n is pentagonal if p=(sqrt(24n+1)+1)/6 is an integer.
# In this case, n is the pth pentagonal number.
i = (sqrt(24*n+1) + 1) / 6
@ -199,9 +218,9 @@ def is_pentagonal(n):
# d_(n+1)=(S-m_(n+1)^2)/d_n
# a_(n+1)=floor((sqrt(S)+m_(n+1))/d_(n+1))=floor((a_0+m_(n+1))/d_(n+1))
# if a_i=2*a_0, the algorithm ends.
def build_sqrt_cont_fraction(i, l):
mn = 0
dn = 1
def build_sqrt_cont_fraction(i: int, l: int) -> Tuple[List[int], int]:
mn = 0.0
dn = 1.0
count = 0
fraction = [0] * l
@ -233,7 +252,7 @@ def build_sqrt_cont_fraction(i, l):
# Function to solve the Diophantine equation in the form x^2-Dy^2=1
# (Pell equation) using continued fractions.
def pell_eq(d):
def pell_eq(d: int) -> int:
# Find the continued fraction for sqrt(d).
fraction, _ = build_sqrt_cont_fraction(d, 100)
@ -278,7 +297,7 @@ def pell_eq(d):
# Function to check if a number is semiprime. Parameters include
# pointers to p and q to return the factors values and a list of
# primes.
def is_semiprime(n, primes):
def is_semiprime(n: int, primes: List[int]) -> Tuple[bool, int, int]:
# If n is prime, it's not semiprime.
if primes[n] == 1:
return False, -1, -1
@ -336,14 +355,14 @@ def is_semiprime(n, primes):
# If n=pq is semiprime, phi(n)=(p-1)(q-1)=pq-p-q+1=n-(p+4)+1
# if p!=q. If p=q (n is a square), phi(n)=n-p.
def phi_semiprime(n, p, q):
def phi_semiprime(n: int, p: int, q: int) -> int:
if p == q:
return n - p
return n - (p + q) + 1
def phi(n, primes):
def phi(n: int, primes: List[int]) -> float:
# If n is primes, phi(n)=n-1.
if primes[n] == 1:
return n - 1
@ -354,7 +373,7 @@ def phi(n, primes):
if semi_p:
return phi_semiprime(n, p, q)
ph = n
ph = float(n)
# If 2 is a factor of n, multiply the current ph (which now is n)
# by 1-1/2, then divide all factors 2.
@ -417,7 +436,7 @@ def phi(n, primes):
# Function implementing the partition function.
def partition_fn(n, partitions, mod=-1):
def partition_fn(n: int, partitions: List[int], mod: int = -1) -> int:
# The partition function for negative numbers is 0 by definition.
if n < 0:
return 0
@ -452,7 +471,7 @@ def partition_fn(n, partitions, mod=-1):
return int(res)
def dijkstra(matrix, distances, m, n, up=False, back=False, start=0):
def dijkstra(matrix: List[List[int]], distances: List[List[int]], m: int, n: int, up: bool = False, back: bool = False, start: int = 0) -> None:
visited = zeros((m, n), int)
for i in range(m):
@ -495,17 +514,3 @@ def dijkstra(matrix, distances, m, n, up=False, back=False, start=0):
if i == m - 1 and j == n - 1:
break
def timing(f):
@wraps(f)
def wrapper(*args, **kwargs):
start = default_timer()
result = f(*args, **kwargs)
end = default_timer()
print(f'{f.__name__!r} took {end - start:.9f} seconds')
return result
return wrapper