Add type hints to projecteuler.py
This commit is contained in:
parent
b6b10cdd12
commit
b3643b2f28
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from typing import Callable, List, ParamSpec, Tuple, TypeVar
|
||||
from functools import wraps
|
||||
from math import sqrt, floor, ceil, gcd
|
||||
from timeit import default_timer
|
||||
@ -7,7 +8,25 @@ from timeit import default_timer
|
||||
from numpy import zeros
|
||||
|
||||
|
||||
def is_prime(num):
|
||||
P = ParamSpec('P')
|
||||
R = TypeVar('R')
|
||||
|
||||
|
||||
def timing(f: Callable[P, R]) -> Callable[P, R]:
|
||||
@wraps(f)
|
||||
def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
|
||||
start = default_timer()
|
||||
result = f(*args, **kwargs)
|
||||
end = default_timer()
|
||||
|
||||
print(f'{f.__name__!r} took {end - start:.9f} seconds')
|
||||
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def is_prime(num: int) -> bool:
|
||||
if num < 4:
|
||||
# If num is 2 or 3 then it's prime.
|
||||
return num in (2, 3)
|
||||
@ -31,7 +50,7 @@ def is_prime(num):
|
||||
return True
|
||||
|
||||
|
||||
def is_palindrome(num, base=10):
|
||||
def is_palindrome(num: int, base: int = 10) -> bool:
|
||||
reverse = 0
|
||||
|
||||
tmp = num
|
||||
@ -54,12 +73,12 @@ def is_palindrome(num, base=10):
|
||||
|
||||
|
||||
# Least common multiple algorithm using the greatest common divisor.
|
||||
def lcm(a, b):
|
||||
def lcm(a: int , b: int) -> int:
|
||||
return a * b // gcd(a, b)
|
||||
|
||||
|
||||
# Recursive function to calculate the least common multiple of more than 2 numbers.
|
||||
def lcmm(values, n):
|
||||
def lcmm(values: List[int], n: int) -> int:
|
||||
# If there are only two numbers, use the lcm function to calculate the lcm.
|
||||
if n == 2:
|
||||
return lcm(values[0], values[1])
|
||||
@ -71,7 +90,7 @@ def lcmm(values, n):
|
||||
|
||||
|
||||
# Function implementing the Sieve or Eratosthenes to generate primes up to a certain number.
|
||||
def sieve(n):
|
||||
def sieve(n: int) -> List[int]:
|
||||
primes = [1] * (n + 1)
|
||||
|
||||
# 0 and 1 are not prime, 2 and 3 are prime.
|
||||
@ -100,7 +119,7 @@ def sieve(n):
|
||||
return primes
|
||||
|
||||
|
||||
def count_divisors(n):
|
||||
def count_divisors(n: int) -> int:
|
||||
count = 0
|
||||
# For every divisor below the square root of n, there is a corresponding one
|
||||
# above the square root, so it's sufficient to check up to the square root of n
|
||||
@ -118,7 +137,7 @@ def count_divisors(n):
|
||||
return count
|
||||
|
||||
|
||||
def find_max_path(triang, n):
|
||||
def find_max_path(triang: List[List[int]], n: int) -> int:
|
||||
# Start from the second to last row and go up.
|
||||
for i in range(n-2, -1, -1):
|
||||
# For each element in the row, check the two adjacent elements
|
||||
@ -133,7 +152,7 @@ def find_max_path(triang, n):
|
||||
return triang[0][0]
|
||||
|
||||
|
||||
def sum_of_divisors(n):
|
||||
def sum_of_divisors(n: int) -> int:
|
||||
# For each divisor of n smaller than the square root of n,
|
||||
# there is another one larger than the square root. If i is
|
||||
# a divisor of n, so is n/i. Checking divisors i up to square
|
||||
@ -141,20 +160,20 @@ def sum_of_divisors(n):
|
||||
# all divisors.
|
||||
limit = floor(sqrt(n)) + 1
|
||||
|
||||
sum_ = 1
|
||||
_sum = 1
|
||||
|
||||
for i in range(2, limit):
|
||||
if n % i == 0:
|
||||
sum_ += i
|
||||
_sum += i
|
||||
|
||||
# If n is a perfect square, i=limit is a divisor and has to be counted only once.
|
||||
if n != i * i:
|
||||
sum_ = sum_ + n // i
|
||||
_sum = _sum + n // i
|
||||
|
||||
return sum_
|
||||
return _sum
|
||||
|
||||
|
||||
def is_pandigital(value, n):
|
||||
def is_pandigital(value: int, n: int) -> bool:
|
||||
i = 0
|
||||
digits = [0] * (n + 1)
|
||||
|
||||
@ -180,7 +199,7 @@ def is_pandigital(value, n):
|
||||
return True
|
||||
|
||||
|
||||
def is_pentagonal(n):
|
||||
def is_pentagonal(n: int) -> bool:
|
||||
# A number n is pentagonal if p=(sqrt(24n+1)+1)/6 is an integer.
|
||||
# In this case, n is the pth pentagonal number.
|
||||
i = (sqrt(24*n+1) + 1) / 6
|
||||
@ -199,9 +218,9 @@ def is_pentagonal(n):
|
||||
# d_(n+1)=(S-m_(n+1)^2)/d_n
|
||||
# a_(n+1)=floor((sqrt(S)+m_(n+1))/d_(n+1))=floor((a_0+m_(n+1))/d_(n+1))
|
||||
# if a_i=2*a_0, the algorithm ends.
|
||||
def build_sqrt_cont_fraction(i, l):
|
||||
mn = 0
|
||||
dn = 1
|
||||
def build_sqrt_cont_fraction(i: int, l: int) -> Tuple[List[int], int]:
|
||||
mn = 0.0
|
||||
dn = 1.0
|
||||
count = 0
|
||||
|
||||
fraction = [0] * l
|
||||
@ -233,7 +252,7 @@ def build_sqrt_cont_fraction(i, l):
|
||||
|
||||
# Function to solve the Diophantine equation in the form x^2-Dy^2=1
|
||||
# (Pell equation) using continued fractions.
|
||||
def pell_eq(d):
|
||||
def pell_eq(d: int) -> int:
|
||||
# Find the continued fraction for sqrt(d).
|
||||
fraction, _ = build_sqrt_cont_fraction(d, 100)
|
||||
|
||||
@ -278,7 +297,7 @@ def pell_eq(d):
|
||||
# Function to check if a number is semiprime. Parameters include
|
||||
# pointers to p and q to return the factors values and a list of
|
||||
# primes.
|
||||
def is_semiprime(n, primes):
|
||||
def is_semiprime(n: int, primes: List[int]) -> Tuple[bool, int, int]:
|
||||
# If n is prime, it's not semiprime.
|
||||
if primes[n] == 1:
|
||||
return False, -1, -1
|
||||
@ -336,14 +355,14 @@ def is_semiprime(n, primes):
|
||||
|
||||
# If n=pq is semiprime, phi(n)=(p-1)(q-1)=pq-p-q+1=n-(p+4)+1
|
||||
# if p!=q. If p=q (n is a square), phi(n)=n-p.
|
||||
def phi_semiprime(n, p, q):
|
||||
def phi_semiprime(n: int, p: int, q: int) -> int:
|
||||
if p == q:
|
||||
return n - p
|
||||
|
||||
return n - (p + q) + 1
|
||||
|
||||
|
||||
def phi(n, primes):
|
||||
def phi(n: int, primes: List[int]) -> float:
|
||||
# If n is primes, phi(n)=n-1.
|
||||
if primes[n] == 1:
|
||||
return n - 1
|
||||
@ -354,7 +373,7 @@ def phi(n, primes):
|
||||
if semi_p:
|
||||
return phi_semiprime(n, p, q)
|
||||
|
||||
ph = n
|
||||
ph = float(n)
|
||||
|
||||
# If 2 is a factor of n, multiply the current ph (which now is n)
|
||||
# by 1-1/2, then divide all factors 2.
|
||||
@ -417,7 +436,7 @@ def phi(n, primes):
|
||||
|
||||
|
||||
# Function implementing the partition function.
|
||||
def partition_fn(n, partitions, mod=-1):
|
||||
def partition_fn(n: int, partitions: List[int], mod: int = -1) -> int:
|
||||
# The partition function for negative numbers is 0 by definition.
|
||||
if n < 0:
|
||||
return 0
|
||||
@ -452,7 +471,7 @@ def partition_fn(n, partitions, mod=-1):
|
||||
return int(res)
|
||||
|
||||
|
||||
def dijkstra(matrix, distances, m, n, up=False, back=False, start=0):
|
||||
def dijkstra(matrix: List[List[int]], distances: List[List[int]], m: int, n: int, up: bool = False, back: bool = False, start: int = 0) -> None:
|
||||
visited = zeros((m, n), int)
|
||||
|
||||
for i in range(m):
|
||||
@ -495,17 +514,3 @@ def dijkstra(matrix, distances, m, n, up=False, back=False, start=0):
|
||||
|
||||
if i == m - 1 and j == n - 1:
|
||||
break
|
||||
|
||||
|
||||
def timing(f):
|
||||
@wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
start = default_timer()
|
||||
result = f(*args, **kwargs)
|
||||
end = default_timer()
|
||||
|
||||
print(f'{f.__name__!r} took {end - start:.9f} seconds')
|
||||
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
Loading…
x
Reference in New Issue
Block a user