From aad8467fb9da1ed56e393376ee693dc09d83f6ad Mon Sep 17 00:00:00 2001 From: Daniele Fucini Date: Fri, 29 Mar 2024 11:50:11 +0100 Subject: [PATCH] Add Haskell solutions for Problems 1, 2, 3 --- Haskell/p001.hs | 12 ++++++++++++ Haskell/p002.hs | 18 ++++++++++++++++++ Haskell/p003.hs | 23 +++++++++++++++++++++++ 3 files changed, 53 insertions(+) create mode 100644 Haskell/p001.hs create mode 100644 Haskell/p002.hs create mode 100644 Haskell/p003.hs diff --git a/Haskell/p001.hs b/Haskell/p001.hs new file mode 100644 index 0000000..ecad635 --- /dev/null +++ b/Haskell/p001.hs @@ -0,0 +1,12 @@ +-- If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. +-- +-- Find the sum of all the multiples of 3 or 5 below 1000. +sumMultiples :: (Integral n) => n +sumMultiples = sum(filter p [ n | n <- [1..999] ]) + where p n = n `mod` 3 == 0 || n `mod` 5 == 0 + +main :: IO () +main = do + let result = sumMultiples + putStrLn $ "Project Euler, Problem 1\n" + ++ "Answer: " ++ (show result) diff --git a/Haskell/p002.hs b/Haskell/p002.hs new file mode 100644 index 0000000..4c48568 --- /dev/null +++ b/Haskell/p002.hs @@ -0,0 +1,18 @@ +-- Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: +-- +-- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... +-- +-- By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. +fib :: (Integral n) => n -> n +fib 0 = 0 +fib 1 = 1 +fib n = fib (n-1) + fib(n-2) + +sumEvenFib :: (Integral n) => n +sumEvenFib = sum $ filter even $ takeWhile (<=4000000) (map fib [0..]) + +main :: IO () +main = do + let result = sumEvenFib + putStrLn $ "Project Euler, Problem 2\n" + ++ "Answer: " ++ (show result) diff --git a/Haskell/p003.hs b/Haskell/p003.hs new file mode 100644 index 0000000..1abb4e6 --- /dev/null +++ b/Haskell/p003.hs @@ -0,0 +1,23 @@ +-- The prime factors of 13195 are 5, 7, 13 and 29. -- +-- What is the largest prime factor of the number 600851475143? + +isPrime :: (Integral n) => n -> Bool +isPrime 1 = False +isPrime 2 = True +isPrime 3 = True +isPrime n = + n `mod` 2 /= 0 && n `mod` 3 /= 0 && null [ x | x <- candidates, n `mod` x == 0 || n `mod` (x+2) == 0 ] + where candidates = [5,11..limit] + limit = floor(sqrt(fromIntegral n)) + 1 + +maxPrimeFactor :: (Integral n) => n -> n +maxPrimeFactor n + | isPrime n = n + | n `mod` 2 == 0 = maxPrimeFactor $ fromIntegral n `div` 2 + | otherwise = maxPrimeFactor $ fromIntegral n `div` head [i | i <- [3,5..], n `mod` i == 0 && isPrime i] + +main :: IO () +main = do + let result = maxPrimeFactor 600851475143 + putStrLn $ "Project Euler, Problem 3\n" + ++ "Answer: " ++ (show result)