From 85841be19b0247b07fd62c12810ce2fa4fcb44e0 Mon Sep 17 00:00:00 2001 From: Daniele Fucini Date: Fri, 29 Mar 2024 20:18:11 +0100 Subject: [PATCH] Add separate ProjectEuler.hs module --- Haskell/ProjectEuler.hs | 12 ++++++++++++ Haskell/p003.hs | 10 +--------- 2 files changed, 13 insertions(+), 9 deletions(-) create mode 100644 Haskell/ProjectEuler.hs diff --git a/Haskell/ProjectEuler.hs b/Haskell/ProjectEuler.hs new file mode 100644 index 0000000..f4b6d29 --- /dev/null +++ b/Haskell/ProjectEuler.hs @@ -0,0 +1,12 @@ +module ProjectEuler +( isPrime +) where + +isPrime :: (Integral n) => n -> Bool +isPrime 1 = False +isPrime 2 = True +isPrime 3 = True +isPrime n = + n `mod` 2 /= 0 && n `mod` 3 /= 0 && null [ x | x <- candidates, n `mod` x == 0 || n `mod` (x+2) == 0 ] + where candidates = [5,11..limit] + limit = floor(sqrt(fromIntegral n)) + 1 diff --git a/Haskell/p003.hs b/Haskell/p003.hs index 1abb4e6..d3ba943 100644 --- a/Haskell/p003.hs +++ b/Haskell/p003.hs @@ -1,14 +1,6 @@ -- The prime factors of 13195 are 5, 7, 13 and 29. -- -- What is the largest prime factor of the number 600851475143? - -isPrime :: (Integral n) => n -> Bool -isPrime 1 = False -isPrime 2 = True -isPrime 3 = True -isPrime n = - n `mod` 2 /= 0 && n `mod` 3 /= 0 && null [ x | x <- candidates, n `mod` x == 0 || n `mod` (x+2) == 0 ] - where candidates = [5,11..limit] - limit = floor(sqrt(fromIntegral n)) + 1 +import ProjectEuler maxPrimeFactor :: (Integral n) => n -> n maxPrimeFactor n