Add type hints in problems 1-10

This commit is contained in:
daniele 2024-09-29 14:53:46 +02:00
parent 51ed3838ab
commit 2d3b9eb45b
Signed by: fuxino
GPG Key ID: 981A2B2A3BBF5514
10 changed files with 16 additions and 15 deletions

View File

@ -8,7 +8,7 @@ from projecteuler import timing
@timing
def p001():
def p001() -> None:
sum_ = 0
# Simple brute-force approach: try every number between 3 and 999,

View File

@ -10,7 +10,7 @@ from projecteuler import timing
@timing
def p002():
def p002() -> None:
N = 4000000
fib1 = 1

View File

@ -10,7 +10,7 @@ from projecteuler import is_prime, timing
# Recursive approach: if num is prime, return num, otherwise
# recursively look for the largest prime factor of num divided
# by its prime factors until only the largest remains.
def max_prime_factor(num):
def max_prime_factor(num: int) -> int:
# Use function defined in projecteuler.py to check if a number is prime.
if is_prime(num):
return num
@ -34,7 +34,7 @@ def max_prime_factor(num):
@timing
def p003():
def p003() -> None:
res = max_prime_factor(600851475143)
print('Project Euler, Problem 3')

View File

@ -8,7 +8,7 @@ from projecteuler import is_palindrome, timing
@timing
def p004():
def p004() -> None:
max_ = 0
# Using a brute-force approach: generate every product of 3-digit numbers

View File

@ -8,7 +8,7 @@ from projecteuler import lcmm, timing
@timing
def p005():
def p005() -> None:
values = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

View File

@ -16,7 +16,7 @@ from projecteuler import timing
@timing
def p006():
def p006() -> None:
sum_squares = 0
square_sum = 0

View File

@ -8,7 +8,7 @@ from projecteuler import is_prime, timing
@timing
def p007():
def p007() -> None:
count = 1
n = 1

View File

@ -29,7 +29,7 @@ from projecteuler import timing
@timing
def p008():
def p008() -> None:
number = '73167176531330624919225119674426574742355349194934' +\
'96983520312774506326239578318016984801869478851843' +\
'85861560789112949495459501737958331952853208805511' +\
@ -53,7 +53,7 @@ def p008():
# Transform the string into a list of integers
number = list(map(int, number))
max_ = 0
_max = 0
# Calculate all the 13-digit products, and save the maximum
for i in range(1000-13):
@ -63,11 +63,10 @@ def p008():
for j in curr:
prod = prod * j
if prod > max_:
max_ = prod
_max = max(_max, prod)
print('Project Euler, Problem 8')
print(f'Answer: {max_}')
print(f'Answer: {_max}')
if __name__ == '__main__':

View File

@ -15,7 +15,7 @@ from projecteuler import timing
@timing
def p009():
def p009() -> None:
found = 0
m = 2
@ -34,6 +34,7 @@ def p009():
if a + b + c == 1000:
found = 1
break
i = 2
@ -48,6 +49,7 @@ def p009():
b = tmpb
c = tmpc
found = 1
break
if tmpa + tmpb + tmpc > 1000:

View File

@ -8,7 +8,7 @@ from projecteuler import sieve, timing
@timing
def p010():
def p010() -> None:
N = 2000000
# Use the function in projecteuler.py implementing the